• Title/Summary/Keyword: cytotoxicity assay

Search Result 1,756, Processing Time 0.036 seconds

Exploring Structure-Activity Relationships for the In vitro Cytotoxicity of Alkylphenols (APs) toward HeLa Cell

  • Kim, Myung-Gil;Shin, Hye-Seoung;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • In vitro cytotoxicity of 23 alkyl phenols (APs) on human cervical cancer cell lines (HeLa) was determined using the lactate dehydrogenase (LDH) cytotoxicity assay. Two different sets of descriptors were used to construct the calibration model based on Genetic Algorithm-Multiple Linear Regression (GA-MLR) based on the experimental data. A statistically robust Structure-Activity Relationships (QSAR) model was achieved ($R^2$=95.05%, $Q^2_{LOO}$=91.23%, F=72.02 and SE= 0.046) using three Dragon descriptors based on Me (0D-Constitutional descriptor), BELp8 (2D-Burden eigenvalue descriptor) and HATS8p (3D-GETAWAY descriptor). However, external validation could not fully prove its validity of the selected QSAR in characterization of the cytotoxicity of APs towards HeLa cells. Nevertheless, the cytotoxicity profiles showed a finding that 4-n-octylphenol (4-NOP), 4-tert-octyl-phenol (4-TOP), 4-n-nonylphenol (4-NNP) had a more potent cytotoxic effect than other APs tested, inferring that increased length and molecular bulkiness of the substituent had important influence on the LDH cytotoxicity.

Structure-Activity Relationship of Triterpenoids Isolated from Mitragyna stipulosa on Cytotoxicity

  • Tapondjou, Leon Azefack;Lontsi, David;Sondengam, Beiham Luc;Choudhary, Muhammad Iqbal;Park, Hee-Juhn;Choi, Jong-Won;Lee, Kyung-Tae
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.270-274
    • /
    • 2002
  • Chromatographic separation of the stem bark extract of Mitragyna stipulosa afforded triterpene derivatives ursolic acid (1), quinovic acid (2), quinivic acid $3-O-{\beta}-D-glucopyranoside$ (3, quinovin glycoside C), quinovic acid 3-O-[$(2-O-sulfo)-{\beta}-D-quinovopyranoside$] (4, zygophyloside D) and quinovic acid $3-O-{\beta}-D-quinovopyranosyl-27-O-{\beta}-D-glucopyranosyl$ ester (5, zygophyloside B). These five compounds were subjected to the cytotoxicity on MTT assay system. Compound 1 among tested showed the most potent cytotoxicity. Quinovic acid showed less potent cytotoxicity than ursolic acid and sugar linkages to 2 decreased the cytotoxicity. Compound 4 more potent than 3 with indicate that the sulfonyl group significantly enhances the activity. This indicates that the glycosidic linkage in ursane-type triterpenoids has mainly negative effect on cytotoxicity unlike in oleanane-type glycosides.

Antioxidant Effect of Poncirin and Cytotoxicity on Cultured Human Skin Fibroblast Damaged by Methyl Mercury

  • Jung, In-Ju;Back, Jong-Cheon;Choi, Yu-Sun
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.355-360
    • /
    • 2007
  • In order to evaluate on the cytotoxicity of methyl mercury (MM) and antioxidant effect of phenolic compound, poncirin against MM-induced cytotoxicity, XTT assay was performed to determine the cell viability after human skin fibroblasts (Detroit 51) were grown in the media containing various concentrations of methylmercuric chloride (MMC). And also, the antioxidant effect of poncirin on the cytotoxicity induced by MMC was examined by cell viability and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in these cultures. MMC decreased cell viability in dose-dependent manner in these cultures and the midcytotoxicity value was determined at concentration of 30 ${\mu}M$ MMC after human skin fibroblasts were treated with $10\sim50{\mu}M$ MMC for 72 hours, respectively. MMC was highly toxic on cultured human skin fibroblasts by toxic criteria. MMC-mediated cytotoxicity was related with oxidative stress by the diminution of toxic effect according to the treatment of vitamin E. In the antioxidant effect of poncirin, it showed vitamin E-like DPPH radical scavenging activity at 90 ${\mu}g/ml$ poncirin and also, remarkably increased cell viability compared with MMC-treated group. From these results, it is suggested that MMC-mediated cytoxicity was highly toxic and was related with oxidative stress in cultured human skin fibroblasts, and also phenolic compound such as poncirin showed the protection on MMC-induced cytotoxicity by antioxidant effect in these cultures.

  • PDF

Cytotoxicity Against Human Cancer Cell Lines by Paecilomyces tenuipes DUGM 32001 (눈꽃동충하초(Paecilomyces tenuipes)의 인간 암세포주에 대한 세포독성)

  • 심중섭;민응기;장해룡;이창윤;김삼수;한영환
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.312-315
    • /
    • 2000
  • Paecilomyces tenuipes DGUM 32001, an entomopathogenic fungus, was examined to evaluate in vitro cytotoxicity against several human cancer cells. The fruiting bodies of P. tenuipes were extracted with methanol and fractioned with some organic solvents i.e. chloroform, ethyl acetate, and butanol. The methanol extracts of P. tenuipes showed significant cytotoxicity against human cancer cell lines; HeLa, HeLa S3, and A-431. Among the fractions tested, the ethyl acetate fraction had the highest cytotoxicity against three cancer cell lines. The $IC_{50}$ values of ethyl acetate fraction against HeLa, HeLa S3, and A-431 were 13, 35, and 30 $\mu$g/ml, respectively. However, cytotoxicity might not be due to apoptosis. The methanol extract of cultured mycelia showed high cytotoxicity against HeLa cell lines.

  • PDF

Evaluation of Oxidative DNA Damage Using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay, and the Protective Effects of N-Acetylcysteine Amide on Zearalenone-induced Cytotoxicity in Chang Liver Cells

  • Kang, Changgeun;Lee, Hyungkyoung;Yoo, Yong-San;Hah, Do-Yun;Kim, Chung Hui;Kim, Euikyung;Kim, Jong Shu
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.43-52
    • /
    • 2013
  • Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium that are found in cereals and agricultural products. ZEN has been implicated in mycotoxicosis in farm animals and in humans. The toxic effects of ZEN are well known, but the ability of an alkaline Comet assay to assess ZEN-induced oxidative DNA damage in Chang liver cells has not been established. The first aim of this study was to evaluate the Comet assay for the determination of cytotoxicity and extent of DNA damage induced by ZEN toxin, and the second aim was to investigate the ability of N-acetylcysteine amide (NACA) to protect cells from ZEN-induced toxicity. In the Comet assay, DNA damage was assessed by quantifying the tail extent moment (TEM; arbitrary unit) and tail length (TL; arbitrary unit), which are used as indicators of DNA strand breaks in SCGE. The cytotoxic effects of ZEN in Chang liver cells were mediated by inhibition of cell proliferation and induction of oxidative DNA damage. Increasing the concentration of ZEN increased the extent of DNA damage. The extent of DNA migration, and percentage of cells with tails were significantly increased in a concentration-dependent manner following treatment with ZEN toxin (p < 0.05). Treatment with a low concentration of ZEN toxin (25 ${\mu}M$) induced a relatively low level of DNA damage, compared to treatment of cells with a high concentration of ZEN toxin (250 ${\mu}M$). Oxidative DNA damage appeared to be a key determinant of ZEN-induced toxicity in Chang liver cells. Significant reductions in cytolethality and oxidative DNA damage were observed when cells were pretreated with NACA prior to exposure to any concentration of ZEN. Our data suggest that ZEN induces DNA damage in Chang liver cells, and that the antioxidant activity of NACA may contribute to the reduction of ZEN-induced DNA damage and cytotoxicity via elimination of oxidative stress.

Comparative Study on the Content and Cytotoxicity of Pseudolaric Acid B in the Five Plant Parts of Pseudolarix kaempferi

  • Nugroho, Agung;Woo, Nam-Tae;Park, Kyoung-Sik;Kwon, Na-Yun;Jung, Woo-Nyung;Lee, Sang Kook;Kim, Dong-Hwa;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.265-269
    • /
    • 2017
  • Pseudolaric acids of Pseudolarix kaempferi (Pinaceae) have been known as diterpenoids with potent anti-fungal-, anti-microbial, and cytotoxic activities. In the present study, the five MeOH extracts were prepared from the five plant part (root bark, stem bark, leaf, the inner part of root, and cone) to find the relation between the concentration of pseudolaric acids and cytotoxicity. Pseudolaric acids B and C were isolated from the root bark of P. kaempferi to use them as standard compounds. The five extracts were tested on cytotoxicity against six cancer cell lines, A549 (lung), HCT116 (colon), MDA-MB-231 (breast), SNU638 (stomach), and SK-hep-1 (liver) by SRB assay, but against K562 (leukemia) by SRB- or MTT assay. HPLC quantification were performed on a Shisheido Capcell PAK C18 column ($5{\mu}m$, $4.6mm{\times}250mm$) using 254 nm wavelength. The cytotoxicity ($IC_{50}$, $0.36{\mu}g/ml$ on K562 cell lines) of the root bark extract was potent and the content (101.1 mg/g extract) of pseudolaric acid B was very high in the root bark. These results suggest that the MeOH extract obtained from the root bark could be developed as the anti-cancer agent with a high quantity of pseudolaric acid B.

The Effects on Antimicrobial and Cytotoxicity of Solanum Iyratum Fractions (배풍등 분획물의 항균 및 암세포 증식 억제효과)

  • Shin Mi-Ok
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.948-954
    • /
    • 2005
  • In this study, we investigated antimicrobial and cytotoxicity effects to each fraction extracted from Solanum lyratum (SL), which were extracted methanol (SLM) and then the extract was fractionated into five different types : hexane (SLMH), ethyl ether (SLMEE), ethylacetate (SLMEA), butanol (SLMB) and aqueous (SLMA). The antimicrobial activity was analyzed by the paper disc method. Among the various solvent fractions, SLMEA showed the strongest antimicrobial activies. The cytotoxicity of SL fractions on HeLa, MCF-7, HT-29 and HepG2 cells was evaluated by MTT assay. Among various partition layers, SLMEE showed the strongest cytotoxic effects to all cancer cell lines. We also observed that quinone reductase (QR) was induced by all fraction layers of SL to HepG2 cells. Since the QR-induced effects of SLMEE on HepG2 cells at $160{\mu}g/ml$ concentration showed 2.1 when compared with a control value of 1.0, inducer of QR for cancer protection may be contained in this fraction.

Physical Properties and Cytotoxicity of Dental Pit and Fissure Sealants Containing Cerium Oxide Nano Particles(CNPs) (세륨옥사이드나노입자(Cerium Oxide Nano Particles; CNPs)를 첨가한 치면열구전색재의 물리적 특성 및 세포독성)

  • Jeong, Mi-Ae;Kim, Dong-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.586-592
    • /
    • 2022
  • In this study cerium nano particles(CNPs) with 0-4.0 wt% was incorporated to the conventional dental pit and fissure sealant(ConciseTM) to produce new pit and fissure sealant the physical properties and cytotoxicity. The physical properties were measured for polymerizing depth the degree of water absorption and solubility. The cytotoxicity of cell viability was analyzed by MTT assay using immortalized human oral keratinocyte(IHOK). As a result of this preceding study the polymerizing depth was decreased by the increasing of the amount of CNPs. The solubility degree of the sealant added CNPs with 2.0 wt% showed was the lower and the water absorption showed no significantly difference with the control groups(p>0.05). The cytotoxicity test results showed high survival rates in all experimental groups. Therefore, pit and fissure sealant by the addition of CNPs excellent cell viability be produced without weaken the physical property of the cell viability fissure sealant containing CNPs does not weaken physical properties and has no cytotoxic effects biocompatibility. Considering its properties effect of CNPs, further studies are required for distribution technology application.

Protective Effect of Crataegi Fructus Extract on the Neurotoxicity Induced by Reactive Oxygen Species in Cultured C6 Glioma Cell

  • Ha, Dae-Ho;Yoo, Sun-Mi
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • To clerify the antioxidant effect of Crataegi Fructus (CF) extract on reactive oxygen species (ROS), The C6 glioma cells were treated with various concentrations of hydrogen peroxide ($H_2O_2$). The $H_2O_2$-induced neurotoxicity was measured by XTT assay for the cell viability. For the protective effect of CF extract on the cytotoxicity induced by $H_2O_2$, cell viability, lactate dehydroganase (LDH) activity, and the inhibitive activity of lipid peroxidation of CF extract were performed. In this study, $H_2O_2$ decreased cell viability dose- and time-dependent manners and increased LDH activity compared with the control. In the protective effect on $H_2O_2$, CF extract increased cell viability and decreased LDH activity on $H_2O_2$-induced cytotoxicity, lipid peroxidation by FTC assay. From these results, It is suggested that $H_2O_2$ was highly toxic on cultured C6 glioma cells, and also, CF extract showed the protective effect on $H_2O_2$-mediated cytotoxicity.

  • PDF

Fabrication of Cross-linked Nano-Fibrous Chitosan Membranes and Their Biocompatibility Evaluation

  • Nguyen, Thi-Hiep;Lee, Seong-Jin;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Fibrous chitosan membranes were fabricated as a substrate for skin applications using an electro-spinning process with different solvents and varying concentrations. Scanning electron microscopy (SEM) images confirmed that the formation of the chitosan fibrous membrane in trifluoroacetic acid was better than that in acetic acid. Fourier transform infrared spectroscopy showed that the chitosan fibers were cross-linked with glutaraldehyde, and that the cytotoxicity of the aldehyde groups was reduced by glycine and washing by NaOH and DI water. Chitosan cross-linked fibrous membranes were insoluble in water and could be washed thoroughly to wash away glycine and excess NaOH and prevent the infiltration of other water soluble bio-toxic agents using DI water. MTT assay method was employed to test the cytotoxicity of chitosan membranes during fabricating, treating and washing processes. After the dehydration of cell cultured chitosan membranes, cell attachment behavior on the material was evaluated using SEM method. Effect of the treatment processes on the biocompatibility of the chitosan membranes was shown by comparing of filopodium and lamellipodium of fibroblast cells on grown washed and unwashed chitosan fibrous membrane. The MTT assay and SEM morphology confirmed that the washed chitosan fibrous membrane increased cell attachment and cell growth, and decreased toxicity compared to results for the unwashed chitosan fibrous membrane.