• Title/Summary/Keyword: cytoplast

Search Result 18, Processing Time 0.027 seconds

Studies on the Induction of Cytoplasts from the Protoplasts of CMS(Cytoplasmic Male Sterility) Line of Nicotiana and the Fusion of the Cytoplast and the another Protoplasts (담배 CMS line의 원형질체로부터 cytoplast의 유도 및 이와 타품종 원형질체와의 융합에 관한 연구)

  • 소상섭;여읍동
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 1993
  • This study was investigated as a step for the purpose of successful introduction of cytoplasmic inherited characters between the different plants. Cytoplasts were separated from the protoplasts of CMS(cytoplasmic male sterility) line such as MS Burley 21 which carried from Nicotiana megalosiphon. The cytoplasts were fused to protoplasts derived from Nicotiana tabacum Br 64 with PEG(polyethylene g1yco1). The cytoplasts were separated by density gradient centrifugation. Efficient separation of cytoplasts depended on the difference of specific density of gradient solution. However, the iso-osmolality of gradient solution was not important to separate the cytoplasts. The cells for a cybrid were fused with 50% concentration of PEG.

  • PDF

Localization of Cyclin B and Erk1/2 in Ovine Oocytes and MPF and MAPK Activities in Cytoplast and Karyoplast following Enucleation

  • Lee, Joon-Hee;Campbell, Keith H.S.
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2011
  • The development of embryos reconstructed by somatic cell nuclear transfer (SCNT) is dependent upon numerous factors. Central to development is the quality and developmental competence of the recipient cytoplast and the type of the donor nucleus. Typically metaphase of the second meiotic division (MII) has become the cytoplast of choice. Production of a cytoplast requires removal of the recipient genetic material, however, it may remove proteins which are essential for development or reduce the levels of cytoplasmic proteins to influence subsequent reprogramming of the donor nucleus. In this study, enucleation at MII did not affect the activities of either MPF or MAPK kinases. Immunocytochemical staining showed that both Cyclin B1 (MPF) and Erk1/2 (MAPK) were associated with the meiotic spindle of AI/TI oocytes with little staining in the cytoplasm, however, at MII association of both proteins with the spindle had reduced and a greater degree of cytoplasmic distribution was observed. The analysis of oocyte proteins removed during enucleation is a difficult approach to the identification of factors which may be depleted in the cytoplast. This is primarily due to the large numbers of aspirated karyoplasts which would be required for the analysis.

Systems for Production of Calves after Embryo Transfer of Nuclear Transplant Embryos (소 핵이식 수정란에 의한 산자 생산에 관한 연구)

  • 황우석
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.83-90
    • /
    • 1995
  • Production of calves after transfer of nuclear transplant embryos is the latest technology to be applied in commercial livestock breeding. The objective of this study was to establish an efficient procedure to produce offsprings from nuclear transplant embryos. The fusion rates (72.7% vs. 80.8%), cleavage rates (62.5% vs. 71.4%) and rates of development in vitro (12.0% vs. 15.2%) of nuclear transplant embryos were not significantly different between 30 and 40h maturation age of cytoplast. The in vivo and in vitro-derived embryos as nuclei donor were used in this system of bovine nuclear transplantation. Fusion rates of nuclear transplant embryos were not significantly different between in vivo and in vitro-derived embryos (73.0 and 79.2%, respectively). The percentage of embryos reaching the morulae or blastocysts were 21.8% for in vivo-derived embryos and 11.9% for in vitro-derived embryos (p<0.01). Pregnancy rates after embryo transfer of nuclear transplant embryos were not significantly different between in vivo and in vitro-derived embryos (45.9 and 40.5%, respectively). However, calving rates after embryo transfer of nuclear transplant embryos were significantly higher in the in vivo-derived embryos than in vitro (p<0.01). Further research for age of cytoplast and use of in vitro-derived embryos as nuclei donor is required in this system. In conclusion, these results clearly show that the use of in vitro-derived oocytes as recipient cytoplast can improve the nuclear transplant system for genetic progress in cattle.

  • PDF

The Role of Protein Kinases in Reprogramming and Development of SCNT Embryos

  • Choi, Inchul;Campbell, Keith H.S.
    • Journal of Embryo Transfer
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • Successful somatic cell nuclear transfer (SCNT) has been reported across a range of species using a range of recipient cells including enucleated metaphase II (MII) arrested oocytes, enucleated activated MII oocytes, and mitotic zygotes. However, the frequency of development to term varies significantly, not only between different cytoplast recipients but also within what is thought to be a homogenous population of cytoplasts. One of the major differences between cytoplasts is the activities of the cell cycle regulated protein kinases, maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK). Dependent upon their activity, exposure of the donor nucleus to these kinases can have both positive and negative effects on subsequent development. Co-ordination of cell cycle stage of the donor nucleus with the activities of MPF and MAPK in the cytoplast is essential to avoid DNA damage and maintain correct ploidy. However, recent information suggests that these kinases may also effect reprogramming of the somatic nucleus and preimplantation embryo development by other mechanisms. This article will summarise the differences between cytoplast recipients, their effects on development and discuss the potential role/s of MPF and or MAPK in nuclear reprogramming.

Factors Affecting the Development of Embryos Produced by Nuclear Transfer

  • Lee, Joon-Hee;Campbell, Keith H.S.
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.193-203
    • /
    • 2012
  • The development of embryos reconstructed by nuclear transfer is dependent upon numerous factors including the type of recipient cell, method of enucleation, the type of donor cell, method of reconstruction, activation, the cell cycle stage of both the donor nucleus and the recipient cytoplasm and the method of culture of the reconstructed embryos. Many of these points which have been reviewed extensively elsewhere (Sun and Moor, 1995; Colman, 1999; Oback and Wells, 2002; Renard et al., 2002; Galli et al., 2003b), here we will concentrate on main area, the production of suitable cytoplast and nuclear donor, nuclear-cytoplasmic coordination, oocyte activation, culture of reconstructed embryos, and the effects that this may have on development.

Comparison of the biodegradability in the membranes for the guided bone regeneration: preliminary study

  • Lee, Chang-Hyeon;Kang, Yei-Jin;Jo, You-Young;Kweon, HaeYong;Kim, Seong-Gon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.9-13
    • /
    • 2019
  • In this study, 4 different types of GBR membrane were undergone for bio-degradability test; Silk mat from silkworm cocoon (TDI), silk mat from flatwise-spun (FS), collagen membrane (OssGuide), and dPTFE membrane (Cytoplast). Each material was segmented in 10.00 mm length and 0.3 mm thickness. The samples were put into the normal saline at $37^{\circ}C$ for 2 weeks. After that, yield strength and tensile strain were measured and compared them with those of before treatment. The morphology of the membranes was observed by SEM. Tensile strain of FS was significantly increased at 2 weeks' normal saline treatment (P=0.018). When compared to OssGuide, TDI and FS showed significantly higher tensile strain at 2 weeks' normal saline treatment (P<0.05). In the SEM images, there were no significant changes in Cytoplast, TDI, and FS after 2 weeks' treatment. However, OssGuide showed damaged surface after 2 weeks' treatment. In conclusion, both TDI and FS did not have any evidence of biodegradability at 2 weeks' observation in normal saline treatment. However, OssGuide showed more than 20 % decrease in yield strength and tensile strain.

Effect of Fusion Procedure on the Development of Embryos Produced by Somatic Cell Nuclear Transfer in Hanwoo (Korean Cattle) (한우에서 융합방법이 체세포 핵이식 수정란의 발달에 미치는 영향)

  • Im, G.S.;Yang, B.S.;Park, S.J.;Chang, W.K.;Park, C.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.365-373
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the fusion pulses and fusion media on fusion rate and the development of embryos produced by somatic cell nuclear transfer in Hanwoo (Korean cattle). Nuclear donor cumulus and fetal fibroblast cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at 38.5$^{\circ}C$ in a humidified atmosphere of 5% $CO_2$in air. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. The cumulus cell and cytoplast were fused using one pulse of 70 volts for 40$mutextrm{s}$, two pulses of 70 volts for 40$mutextrm{s}$ and one pulse of 180 volts for 15$mutextrm{s}$. The fetal fibroblast cell and cytoplast were fused using one pulse of 180 volts for 15$mutextrm{s}$ or 30$mutextrm{s}$. The cumulus cell and cytoplast were fused using mannitol and Zimmerman cell fusion medium (ZCFM) as a fusion medium. The fused embryos were activated after the fusion with 10 $\mu$M calcium ionophore for 5 min and 2 mM 6-dimethyl- aminopurine for 3 h. The nuclear transfer embryos were cultured in 500 ${mu}ell$ well of modified CR1aa supplemented with 3 mg/$m\ell$ BSA in th $\varepsilon$ four well dish cove red with mineral oil. After 3 days culture, culture medium was changed into modified CRlaa medium containing 1.5 mg/$m\ell$ BSA and 5% FBS for 4 days. The incubation environment was 5% $CO_2$, 5% $O_2$, 90% $N_2$ at 38.5$^{\circ}C$. When the cumulus cells were fused with enucleated oocytes by three different fusion pulses, one pulse of 180 volts for 15 $mutextrm{s}$ yielded the highest fusion rate and developmental rate to blastocyst among the pulses (P<0.05). When the fetal fibroblast cells were fused with enucleated oocytes, one pulse of 180 volts for 30$mutextrm{s}$ yielded significantly higher fusion rate compared with that for 15 $mutextrm{s}$(P<0.05). The present result indicates that the fusion rate between karyoplast and cytoplast was affected by the cell type and the optimal fusion condition was different according to cell type or size. When the fusion was conducted by the use of mannitol and ZCFM, the fusion rate was 71.2% and 65.8%, respectively. The developmental rates to blastocyst were 37.8% and 39.8%, respectively. There was no significant difference between two fusion media in the developmental rate of cumulus cell nuclear transfer embryos. These results indicate that optimal electric current should be selected according to cell type.

  • PDF

Culture of Karyoplast and Cytoplast Complexes in High Osmolarity after Fusion Improve In Vitro Development of Porcine Nuclear Transfer Embryos

  • Im, Gi-Sun;Hwang, In-Sun;Kim, Dong-Hoon;Yang, Byoung-Chul;Kim, Se-Woong;Park, Hyo-Suk;Seo, Jin-Sung;Yang, Bo-Suk;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.291-291
    • /
    • 2004
  • Micromanipulation and fusion are essential to generate nuclear transfer embryos. In this process cytoplasmic damage is unavoidable. This study investigated the hypothesis that higher osmolarity than normal culture medium could help oocytes recover from cytoplasmic damage from micromanipulation and electric pulse. Oocytes derived from a local slaughter house were matured for 42 ∼ 44 h and enucleated. (omitted)

  • PDF

Studies on the culture of bovine nuclear transplant embryos derived in vitro fertilization (체외수정 유래 소 핵이식란의 배양에 관한 연구)

  • Hwang, Woo-suk;Jo, Choong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.179-185
    • /
    • 1995
  • The fusion rates of nuclear transplant embryos with various DC voltage were 55.6-79.2%. The significantly higher fusion rates of nuclear transplant embryos were achieved at the electric field strenght of DC 1.0-2.0kV/cm(72.0-79.2%) than DC 0.75kV/cm(55.6%, P<0.05). No significant differences in the percentage of embryos that cleaved(48.1, 55.4 and 42.6% respectively) and the percentage of cleaved embryos that developed to morulae/blastocyst(1.9, 5.3 and 1.9% respectively) could be found among the three types of in vitro culture system (Granulosa cell, BOEC co-culture and SOF, P>0.01). The age of the recipient cytoplast(30 vs 40hr) had no effect on the fusion rates and the rates of cleavage development(36.9 vs 44.1%, P>0.01).

  • PDF

Effects of Caffeine on Maturation-Promoting Factor (MPF) Activity in Bovine Oocytes and on the Development of Somatic Cell Nuclear Transfer Embryos in White-Hanwoo

  • Lee, Joon-Hee;Lee, Hee-Gyu;Baik, Sang-Ki;Jin, Sang-Jin;Moon, Song-Yi;Eun, Hye-Ju;Kim, Tae-Suk;Ko, Yeoung-Gyu;Kim, Sung-Woo;Park, Hae-Geum;Park, Soo-Bong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.261-267
    • /
    • 2012
  • The technique of SCNT is now well established but still remains inefficient. The in vitro development of SCNT embryos is dependent upon numerous factors including the recipient cytoplast and karyoplast. Above all, the metaphase of the second meiotic division (MII) oocytes have typically become the recipient of choice. Generally high level of MPF present in MII oocytes induces the transferred nucleus to enter mitotic division precociously and causes NEBD and PCC, which may be the critical role for nuclear reprogramming. In the present study we investigated the in vitro development and pregnancy of White-Hanwoo SCNT embryos treated with caffeine (a protein kinase phosphatase inhibitor). As results, the treatment of 10 mM caffeine for 6 h significantly increased MPF activity in bovine oocytes but does not affect the developmental competence to the blastocyst stage in bovine SCNT embryos. However, a significant increase in the mean cell number of blastocysts and the frequency of pregnant on 150 days of White-Hanwoo SCNT embryos produced using caffeine treated cytoplasts was observed. These results indicated that the recipient cytoplast treated with caffeine for a short period prior to reconstruction of SCNT embryos is able to increase the frequency of pregnancy in cow.