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ABSTRACT

The development of embryos reconstructed by nuclear transfer is dependent upon numerous factors including the 
type of recipient cell, method of enucleation, the type of donor cell, method of reconstruction, activation, the cell cycle 
stage of both the donor nucleus and the recipient cytoplasm and the method of culture of the reconstructed embryos. 
Many of these points which have been reviewed extensively elsewhere (Sun and Moor, 1995; Colman, 1999; Oback 
and Wells, 2002; Renard et al., 2002; Galli et al., 2003b), here we will concentrate on main area, the production 
of suitable cytoplast and nuclear donor, nuclear-cytoplasmic coordination, oocyte activation, culture of reconstructed 
embryos, and the effects that this may have on development.
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INTRODUCTION

The concept of nuclear transfer (NT) was first proposed in 
1938 by Spemann, who suggested the transfer of a single 
nucleus into an enucleated oocyte as a method to study cell 
differentiation and nuclear equivalence. However, due to his 
death and to inadequate technical skills the first successful NT 
experiments were not reported until 1952 when Briggs and 
King demonstrated the production of swimming tadpoles after 
transplantation of blastula nuclei into enucleated frog eggs. 
Experiments in amphibians continued and in 1962, John 
Gurdon reported the production of adult toads (Xenopus laevis) 
after the transfer of nuclei from tadpole intestinal epithelial 
cells (Gurdon, 1962a; Gurdon, 1962b). This was the first de-
monstration that the nucleus from a differentiated cell could 
successfully support development, however, in subsequent ex-
periments using nuclei derived from adult keratinocytes, al-
though swimming tadpoles were produced no adult animals 
were obtained (Gurdon et al., 1975).

In mammals, due to the size of the oocyte and the require-
ment for more specialised equipment NT was not reported until 
1975 when Bromhall attempted NT using rabbit eggs. In the 

early 1980s McGrath and Solter reported the first successful 
NT in mammals, live offspring were obtained after the swapping 
of pronuclei between fertilised zygotes demonstrating that 
embryo development could occur after micromanipulation (Mc-
Grath and Solter, 1983), however, when nuclei from later de-
velopmental stages were transferred into enucleated zygotes no 
live offspring were obtained (McGrath and Solter, 1984). Using 
a modification of the technique reported by McGrath and 
Solter, Willadsen reported in 1986 the birth of live lambs after 
the production of embryos by NT using early embryonic blas-
tomeres from 8～16 cell embryos as nuclear donors and enu-
cleated Metaphase II (MII) oocytes as cytoplast recipients 
(Willadsen, 1986). The use of early embryos as nuclear donors 
and enucleated MII oocytes as recipients continued in other 
species and both cattle (Robl et al., 1987) and pigs (Prather 
et al., 1989) were subsequently cloned. The use of early em-
bryos as nuclear donors and the low frequency of development 
obtained severely limited the application of this technology 
and efforts were focused on the development of NT techniques 
from cultured cell populations which would allow the produc-
tion of large number of genetically identical animals and pro-
vide a route for precise genetic modification.
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In 1994, Sims and First reported the production of live calves 
from inner cell mass cells which had been maintained in 
culture, however, under the conditions employed these cells 
grew very slowly, if at all, and were of limited use. In 1996, 
Campbell and colleagues (Campbell et al., 1996b) reported the 
birth of live lambs from cultured cells which were established 
from a blastocyst stage embryo, these cells had in fact diffe-
rentiated in culture and this report paved the way for the sub-
sequent development of offspring using cells derived from 
foetal and adult tissues (Wilmut et al., 1997). Since this time 
offspring have been reported in a range of species including 
cattle (Cibelli et al., 1998), mice (Wakayama et al. 1998), 
goats (Baguisi et al., 1999), pigs (Polejaeva et al., 2000), cats 
(Shin et al., 2002), rabbits (Chesne et al., 2002), mules (Woods 
et al,. 2003), rats (Zhou et al., 2003) and horses (Galli et al., 
2003a) and from a variety of cell types derived from embryos, 
foetuses, juvenile and adult animals.     

1. The Recipient Cell (Cytoplast)
Studies in mammalian NT have utilised a range of embryo-

nic cells as cytoplast recipients including oocytes, zygotes and 
early cleavage stage embryos with varying success. Enucleated 
zygotes of both mouse (McGrath and Solter, 1983; McGrath 
and Solter, 1984; Kwon and Kono, 1996), cattle (Prather and 
First, 1990), and pig (Prather et al., 1989) resulted in limited 
development of the reconstructed embryos. Although studies in 
the mouse demonstrated that enucleated 2-cell embryos could 
support development from early blastomere nuclei (Tsunoda et 
al., 1987), there are no reports of successful development from 
later stage nuclear donors. The use of matured oocytes (also 
termed unfertilised eggs) arrested at metaphase of the second 
meiotic division (MII) has resulted in successful development 
from a range of cell types in a variety of species and have 
commonly become the cytoplast of choice. MII oocytes for 
use as cytoplast recipients can be obtained by a variety of 
means including; in vivo maturation by flushing from the ovi-
duct (Willadsen, 1986), by in vitro maturation of oocytes as-
pirated from antral follicles of living animals or by in vitro 
maturation of oocytes recovered from slaughtered animals. 
Although the use of in vivo matured oocytes may have bene-
ficial effects on early embryo and foetal development (Wells 
et al., 1997), in vitro matured oocytes are commonly used for 
NT in farm animal species according to cost effectiveness 
(Farin et al., 2001). MII oocytes have been used as cytoplast 
recipients for NT utilising a number of protocols, differences 

in these methods including the method of enucleation, the ti-
ming of enucleation, the method and timing of nuclear transfer 
(fusion or injection) and activation may all effect the develop-
ment of the reconstructed embryos. Some of these differences 
will be discussed in more detail with relation to biological 
differences in the resultant cytoplast and the possible effects 
on development.

2. The Nuclear Donor Cell
Embryonic blastomeres from early stage embryos were first 

used as nuclear donors. When it was established that co-ordi-
nation of the cell cycle between donor and recipient cells was 
essential to ensure normal development several laboratories 
started to investigate the possibility of using differentiated cell 
types on specific cell cycle stages for somatic cell nuclear 
transfer (SCNT). After the production of the first mammals from 
cultured embryonic (Campbell et al., 1996) foetal and adult 
cell lines (Wilmut et al., 1997) numerous studies provided ex-
tensive evidence that somatic cells from different tissues and 
ages of animals can be used for SCNT (Shiga et al., 1999; 
Zakhartchenko et al., 1999; Kato et al., 2000). Embryonic 
stem cells have been used for SCNT and better development 
was reported in some studies (Zhou et al., 2001; Eggan et al., 
2002), although other reports indicate widespread epigenetic 
instability in ES cloned mice (Humpherys et al., 2001). In an-
other study somatic cells clones showed normal expression of 
imprinted genes after SCNT (Inoue et al., 2002) although this 
contradicted a report indicating altered gene expression pattern 
in clones derived from ES and cumulus cells (Humpherys et 
al., 2001; Humpherys et al., 2002). The differences between 
groups could be related to variation in the ES cells used in 
each study and also may be affected by the manipulation and 
culture systems used in each study. Unfortunately no conclu-
sion can be made on what is the most appropriate cell type for 
SCNT. However, what is certain is that cells derived from 
early embryos, foetuses, adult differentiated and postmitotic 
cells (Eggan et al., 2004) have successfully been employed for 
the generation of cloned animals.    

3. Nuclear-cytoplasmic Coordination of Donor And Recipient Cells
During a single cell cycle a cell must duplicate all of its 

components and give rise to two daughter cells which are iden-
tical to each other and identical to the cell at birth (Mitchison, 
1971). The events occurring during a cell cycle can be divided 
into those involving cell growth and those involving the nu-



Factors Affecting the Development of Embryos Produced by Nuclear Transfer 195

cleus. These two major groups of events are intimately linked, 
however, for simplicity I will only describe the events occu-
rring in the nuclear division cycle.

The cell cycle of eukaryotic cells is divided into four dis-
tinct phases: G1, S, G2 and M. The discrete period of DNA 
synthesis (S phase) is preceded by a pre-DNA synthesis period 
(G1), and followed by a post-DNA synthetic period (G2). The 
replicated genetic material is equally segregated to the two 
daughter cells during mitosis (M-phase). The nuclear division 
cycle involves two major events, DNA replication (S-phase) 
and segregation of the duplicated genetic material (M phase or 
mitosis). During a single cell cycle all chromosomal DNA 
must be replicated once. The mechanisms by which a cell co-
ordinates DNA replication and prevents re-replication of pre-
viously replicated DNA are unclear however; central to this 
control is maintenance of an intact nuclear envelope (Blow 
and Laskey, 1988).

Early studies in NT reconstructed embryos demonstrated the 
importance of cell cycle coordination between the donor nu-
cleus and the recipient cytoplast in order to prevent DNA 
damage and maintain ploidy of the reconstructed embryos (for 
reviews see (Campbell et al., 1996a; Campbell, 2002; Camp-
bell and Alberio, 2003)). It is now accepted that two major 
types of recipient oocytes (enucleated metaphase II (MII) 
oocytes and pre-activated enucleated MII oocytes) are suitable 
for development to term after single nuclear transfer. One of 
the major differences between these recipient oocytes is the 
levels of protein kinase activities present in the cytoplasm. MII 
arrested oocytes contain high levels of maturation-promoting 
factor (MPF) and mitogen-activated protein kinase (MAPK) 
activities, cytoplasmic protein kinases responsible for the changes 
in nuclear and chromatin structure during both meiotic and 
mitotic cell cycles cell cycle (Campbell et al., 1996a). The pre-
sence or absence of these protein kinases can have beneficial 
or deleterious effects on the fate of the transferred nucleus in 
NT embryos. 

1) Cytoplast with High MPF
Matured oocytes typically become arrested at metaphase of 

the second meiotic division (MII) and contain high levels of 
MPF activity. When an interphase nucleus is transferred into 
MII oocyte, the presence of high levels of MPF in the cyto-
plasm induces the transferred nucleus to enter a mitotic divi-
sion precociously and causes nuclear envelope breakdown (NEBD), 
premature chromosome condensation (PCC) and dispersion of 

nucleoli which may be essential for nuclear reprogramming 
(Collas et al., 1992a). The patterns of NEBD and PCC are 
dependent upon the stage of the donor nucleus at the time of 
transfer (Campbell et al., 1996a; Campbell and Alberio, 2003). 
All nuclei that undergo NEBD, regardless of their cell cycle 
undergo DNA synthesis following the decline of MPF activity, 
reformation of the nuclear envelope and nuclear swelling. NEBD 
and PCC have no apparent deleterious effect on either G1 or 
G2 nuclei, forming single or double chromatids respectively. 
However, S-phase chromatin has a typical pulverised appea-
rance thought to be associated with high levels of DNA da-
mage (Collas et al., 1992b) when mitotic chromosomes are 
transferred the chromosomes remain condensed (Alberio et al., 
2000b) (Fig. 1).

2) Cytoplast with Low MPF
On the other hand, if nuclei are transplanted into pre-acti-

vated oocytes, in which MPF and MAPK activities have 
declined following activation or fertilization, no NEBD or PCC 
are observed. These oocytes are so called ‘permissive’ to do-
nor nuclei in G1, S or G2-phases of the cell cycle with coordi-
nated DNA replication occurring dependent upon the cell cycle 
phase of the donor nucleus due to maintenance of an intact 
nuclear envelope. G1 nuclei undergo a single round of replica-
tion, S phase nuclei continue replication and G2 nuclei do not 
re-replicate (Barnes et al., 1993; Campbell et al., 1993) main-
taining correct ploidy in embryos produced under these condi-

Fig. 1. Effects of nuclear transfer of karyoplasts at defined stages 
of the cell cycle into cytotplasts with high MPF activity 
on chromatin fate, DNA replication and ploidy of resultant 
daughter cells. M: mitosis, MPF: maturation promoting fac-
tor, NEBD: nuclear envelop breakdown, PCC: premature 
condensation, PB: polar body.
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tions. Therefore, all of the resultant daughter cells will be di-
ploid (2n). When any of these three cell cycle stage donor 
cells are transferred into pre-activated oocytes, development to 
blastocyst can be achieved (Campbell et al., 1994). This type 
of oocyte has been termed “a universal recipient” (Campbell 
et al., 1993). When quiescent cells (G0) are used as nuclear 
donors, an exception to coordinated replication exists. DNA 
replication requires the presence of chromosome-bound factors 
that are thought to attach following mitosis and prior to nuclear 
assembly. In quiescent cells these factors are lost with time 
and initiation of DNA replication requires permeabilisation of 
the nuclear membrane (Leno and Munshi, 1994), this would 
occur in cytoplasts with high MPF activity. The fate of M phase 
donor nuclei transferred into pre-activated oocytes has not 
been described. However, an M phase nucleus may undergo 
chromatin decondensation, pronuclear formation and DNA syn-
thesis, resulting in the production of a tetraploid (4n) daughter 
cell (Fig. 2). 

Although development to term has been obtained with both 
of these cytoplast recipients, improved development to both 
the blastocyst stage and to term has been reported when the 
donor chromatin is exposed to the recipient MII cytoplasm 
for an extended period (Wells et al., 1999; Wells et al., 
2003).

4. Oocyte Activation
Mammalian oocytes are ovulated and arrested at MII until 

fertilization. During oocyte maturation (progress from the G2/M 

Fig. 2. Effects of nuclear transfer of karyoplasts at defined stages 
of the cell cycle into cytotplasts with low MPF activity on 
chromatin fate, DNA replication and ploidy of resultant 
daughter cells. M: mitosis, MPF: maturation promoting 
factor, NEBD: nuclear envelop breakdown, PCC: prema-
ture condensation, PB: polar body.

stages of the first meiotic division to MII) specific reorgani-
zation and redistribution of intracellular organelles occurs and 
the oocytes obtain a full complement of signalling molecules 
(Miyazaki et al., 1993; Carroll, 2001). The oocytes are re-
leased from the meiotic arrest by fertilization and initiate early 
embryonic development by inducing a series of cellular events 
within the oocyte. This is referred to as “oocyte activation”. 
The characteristic event of oocyte activation is initiation of 
intracellular calcium ([Ca2+]i) oscillations, leading to other events 
including, resumption and completion of meiosis, cortical gra-
nule exocytosis, decondensation of the sperm nucleus, recruit-
ment of maternal mRNAs, formation of male and female pro-
nuclei and the initiation of DNA synthesis. In NT transfer re-
constructed embryos in addition to the transfer of donor genetic 
material from the karyoplast to the cytoplast, the cytoplast 
must be ‘activated’ in order to initiate development.

3) Events of Oocyte Activation
The fusing of the sperm to the oocyte plasma membrane 

induces an acute increase in cytosolic free Ca2+ concentration 
(Stricker, 1999) which induces oocyte activation. In all mam-
malian oocytes, the initial increase in Ca2+ is followed by a se-
ries of highly repetitive Ca2+ transients of high amplitude (Ca2+ 
oscillations). This Ca2+ release originates from the point of sperm 
entry and subsequent Ca2+ oscillations arise almost synchro-
nously in the entire oocyte within a second (Miyazaki et al., 
1986). These oscillations have been reported in mouse (Cuth-
bertson and Cobbold, 1985; Kline and Kline, 1992), rat (Ben- 
Yosef et al., 1993), rabbit (Fissore and Robl, 1992), bovine 
(Fissore et al., 1992; Sun et al., 1994), porcine (Sun et al., 1992; 
Machaty et al., 1997) and human (Taylor et al., 1993; Tesarik, 
1994). It is accepted that the site of Ca2+ release is the endo-
plasmic reticulum (ER), where ryanodine receptors or inositol 
1,4,5-triphosphate (IP3) receptors are present (Kline and Kline, 
1992). Although a single Ca2+ rise is sufficient for oocyte ac-
tivation, sustained Ca2+ oscillations require a continuous Ca2+ 
influx to refill the endoplasmic reticulum stores (Miyazaki, 
1995) for additional development events (Ozil, 1990).

The intracellular Ca2+ release induces the cortical reaction 
(CR). The cortical granules are located within the cortical re-
gion of the oocytes and contain specialized enzymes and gly-
coproteins. The cortical reaction occurs after sperm-oocyte 
membrane fusion, and is manifested by the release of the con-
tents of the cortical granules into the perivitelline space, thus 
establishing a block to polyspermy (Raz et al., 1998).
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4) Parthenogenetic Activation
Fully matured mammalian oocytes can be induced to undergo 

activation artificially (parthenogenetic) by a variety of physical 
and chemical treatments in the absence of the male genome 
(Kaufman and Gardner, 1974). The activation stimuli are de-
signed to mimic closely the events initiated by the sperm fac-
tor released upon fertilization and result in a Ca2+ rise in the 
treated oocyte (Saunders et al., 2002). Such treatments include; 
Application of an electrical pulse. Short and high voltage DC 
electrical stimuli cause transmembrane Ca2+ influx through the 
formation of temporary pores in the plasma membranes, allowing 
an exchange of extracellular and intracellular ions and macro-
molecules (Zimmermann and Vienken, 1982). Treatment with 
the Ca2+ ionophore (A23187) also induced cortical granule exocy-
tosis, extrusion of the second polar body and pronuclear for-
mation by the contribution of a Ca2+ influx to the [Ca2+]i in-
crease and the release of intracellularly stored Ca2+ (Steinhardt 
et al., 1974; Steinhardt and Epel, 1974; Vincent et al., 1992). 
It was reported that ionomycin induced a biphasic change in 
[Ca2+]i and was used to depleted intracellular Ca2+ enhanced 
stores in mouse oocytes(Jones et al., 1995). Exposure of MII 
oocytes to 7% ethanol for 5～7 min induces pronuclear for-
mation and successful development to blastocyst by promoting 
a rapid potentiation of InsP3-methiated Ca2+ release through 
stimulation of InsP3 formation at the plasma membrane (Ilyin 
and Parker, 1992). In porcine oocytes, intracellular injection of 
CaCl2 into the cytoplasm induced the exocytosis of cortical 
granule, decline in the histone H1 kinase activity, changes in 
the protein synthetic profile, pronuclear formation and subse-
quent development (Machaty et al., 1996). 

Instead of calcium-dependent mechanisms, another method 
of artificial activation of MII oocytes is to prevent the produc-
tion of cyclin B thereby attacking a portion of the calcium- 
signaling pathway downstream of the initial calcium signal. 
Cyclin B is a component of MPF and is continuously syn-
thesized in order to maintain adequate levels of active MPF. 
Inhibition of protein synthesis by treatment with puromycin or 
cycloheximide induced MII oocytes to enter the first interphase 
in mouse (Siracusa et al., 1978; Moses and Kline, 1995; Moos 
et al., 1996) and human oocytes (Balakier and Casper, 1993) 
but not pig oocytes (Nussbaum and Prather, 1995). Greater 
activation and subsequent development have been obtained 
when cycloheximide or puromycin treatment is used in addi-
tion to a calcium transient inducing stimulus (Presicce and 
Yang, 1994; Nussbaum and Prather, 1995; Tanaka and Kana-

gawa, 1997). 

5) Oocyte Activation and Oocyte Aging
The ability to artificially activate MII arrested oocytes 

changes with the age of the oocyte generally determined from 
the initiation of maturation. Aged oocytes are easier to activate 
than freshly matured oocytes (Siracusa et al., 1978; Swann and 
Ozil, 1994; Tanaka and Kanagawa, 1997) because young oocytes 
continuously synthesize new CSF, which preserves MPF and 
maintains the meiotic arrest (Fissore and Robl, 1992; Yang et 
al., 1994). Young oocytes generally require the combination of 
a calcium stimulus with inhibition of protein synthesis or 
application of a kinase inhibitor (i.e. 6-dimethylaminopurine 
(6-DMAP)) (Susko-Parrish et al., 1994), or by inhibition of 
cdk activity (roscovitine, bohemine (Alberio et al., 2001a)), 
however, aged oocytes can be activated by a single stimulus 
which causes a Ca2+ increase due to the inactivation of the 
existing CSF in the cytoplasm of the oocytes and in many cases 
will activate spontaneously (Plante and King, 1996; Suzuki et 
al., 1999).  

Following artificial activation meiosis resumes and in most 
mammalian species the resulting parthenotes are haploid. How-
ever, if extrusion of the second polar body can be prevented, 
the embryos become diploid and this improves subsequent de-
velopment. In bovine oocytes, the combination of ionomycin 
and cytochalasin B resulted in completion of the second meio-
tic division but prevented extrusion of the second polar body 
resulting in diploid embryos (Navara et al., 1994). Similarly 
an activation stimulus in combination with the protein kinase 
inhibitor 6-DMAP also prevents extrusion of the second polar 
body and improved development to the blastocyst stage in 
bovine parthenogenetic embryos (Susko-Parrish et al., 1994). 
6-DMAP induced the second meiotic spindle to disintegrate, 
inducing oocyte entry directly into interphase with only one 
diploid pronucleus.

4. Culture of Reconstructed Embryos
Nuclear transfer reconstructed embryos may be cultured in 

vitro to the blastocyst stage after which they will be transferred 
to a surrogate recipient for development to term. Alternatively, 
embryos may be cultured in vivo in the ligated oviduct of a 
suitable host animal (in general sheep) until a stage suitable 
for transfer to a final surrogate mother is reached.

A number of in vitro culture media have been developed for 
individual species, these have included co-culture systems uti-
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lizing primary oviductal cell monolayers or established cell 
lines (Thompson, 2000; Menezo and Herubel, 2002). Traditio-
nally foetal calf serum was used as a media supplement, how-
ever more recently defined culture media have been developed 
i.e. mSOF (synthetic oviduct fluid media) for cattle and sheep 
(Walker et al., 1992; Matsuyama et al., 1993), NCSU23 
(North Carolina State University) for pigs (Machaty et al., 
1998) and CZB (Chatot, Ziomek and Bavister) or KSOM for 
mice (Chatot et al., 1991). The use of low oxygen systems in 
the absence of co-culture has also been reported to improve 
development (Watson et al., 1994). The culture conditions con-
sist in either one or two steps culture media, in which the 
requirements are adjusted for the embryo at different stages of 
development.

More recently an alternative strategy was reported for the 
culture of NT reconstructed porcine embryos (Polejaeva et al., 
2000). Due to the low birth rates reported following in vitro 
culture of unmanipulated embryos, clones were immediately 
transferred into the oviduct of a synchronized recipient for de-
velopment to term. Due to the low frequency of development 
expected, large numbers of embryos were transferred and gave 
rise to offspring normal. It would be desirable to develop a 
culture system that would promote development of embryos 
with high developmental potential to term. Present culture sys-
tems tend to promote development to the blastocyst stage al-
though the viability of those after transfer is severely compro-
mised considering that only 5～20% reach term. Developing 
non-invasive screening methods for embryo quality, in which 
the whole embryo can be assessed for developmental potential, 
are desirable. Some methods consist in the analysis of ploidy 
or gene expression or single blastomeres, but the information 
obtained by these procedures is not entirely useful considering 
the high rate of mosaicism in in vitro cultured embryos, as 
well as differences in gene expression.

5. Development of Cloned Embryos
Overall the frequency of development to term of so called 

cloned embryos is low, although difficulties arise in comparing 
the results from different laboratories and in different species 
estimates of approximately 2～3% of fused couplets have been 
reported (Gurdon and Colman, 1999). Losses during early 
pregnancy account for up to 40% in ruminants (cattle, sheep 
and goats). It has been reported that failure to form a normal 
placenta is the main cause of abortion at this stage (Hill et al., 
2000). Lack of normal placentome development and vascula-

risation is also accountable for growth deficiencies as well as 
for the frequent observation of hydrops later in gestation (Hill 
et al., 1999; Heyman et al., 2002). Similar placental abnor-
malities have been observed in mouse and sheep, although not 
in goats and pigs. Postnatal development is characterized with 
a higher mortality rate in the first week after delivery. This 
can be the result of dystocia, related to the increased body size 
of the foetuses, immature lungs, general weakness, predisposi-
tion to infections, and weight loss (Zakhartchenko et al., 2001). 
Despite the high rate of losses normal cloned animals have 
been reported in the literature (Chavatte-Palmer et al., 2002; 
Cibelli et al., 2002), although some authors have shown that 
gene expression of all cloned mice is altered (Humpherys et 
al., 2002). Due to the stochastic pattern in the occurrence of 
abnormalities an incomplete or abnormal ‘reprogramming’ is 
suggested as the main reason for the altered gene expression 
and phenotypic aberrations. The consequences of such altera-
tions are unpredictable and may be far reaching. 

CONCLUSIONS

The technique of nuclear transfer (NT) is now well established 
in a variety of species, however, despite considerable research 
it still remains an inefficient technique. In general across the 
species examined only 1～2% of reconstructed embryos are 
able to develop to term and produce live offspring (Gurdon 
and Colman, 1999). In addition, many of the resultant offspring 
suffer from a range of abnormalities and many die within the 
first few months of birth. Although a number of refinements 
have been introduced, including the use of defined culture 
media, piezzo assisted injection for transfer of the donor nu-
cleus and improvements in in vitro oocye maturation, the me-
thodology of NT has remained essentially unchanged since the 
production of the 1st live offspring using embryonic blasto-
meres as nuclear donors (Willadsen, 1986). There are nume-
rous factors affecting development of the reconstructed em-
bryos: the type of recipient cell, method of enucleation, the 
type of the cell acting as nuclear donor, the cell cycle stages 
of both the donor nucleus and the recipient cytoplasm and the 
method of culture of the reconstructed embryos. Oocyte qua-
lity is critical in all reproductive technologies. In particular the 
cell cycle stage and the quality of the oocyte to be used as a 
cytoplast recipient for embryo reconstruction is central to the 
development of embryos produced by NT. 
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