• Title/Summary/Keyword: cytoplasmic membrane

Search Result 293, Processing Time 0.023 seconds

Studies on the Interaction of Glut4 and Cytoskeletal Protein (Glut4와 Cytoskeletal Protein의 상호작용에 관한 연구)

  • 김미영;이경림
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.398-401
    • /
    • 1996
  • The glucose transporters found in the plasma membrane of all animal cells are known to have 12 putative transmembrane domains. Among 7 cytoplasmic loops, the fourth loop is the largest one. Since previous studies showed that cofilin, an actin-modulating protein, was found to interact with the largest cytoplasmic loop of (Na, K)ATPase, we tested if cofilin interacts with the largest cytoplasmic loop of Glut4. We demonstrated by the two-hybrid system that the largest cytoplasmic loop of Glut4 did not show any interaction with cofilin, suggesting that cofilin is not required for the membrane targeting process of other membrane proteins but only for a P-type ATPase.

  • PDF

A PHASE CONTRAST MICROSCOPIC STUDY OF THE EFFECT OF PHENOL ON UNFIXED ODONTOBLAST (PHENOL이 미고정(未固定) 조상아세포(造象牙細胞)에 미치는 영향(影響)에 관(關)한 위상차현미경적(位相差顯微鏡的) 연구(硏究))

  • Hong, Kyoung-Taik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.47-59
    • /
    • 1979
  • In order to study the morphologic changes of the unfixed odontoblasts suspended in phenol solution of several different concentrations, the author carried out the extraction of lower incisor of S-D strain rats to collect the odontoblasts, and the cells obtained were suspended immediately in saline solution. After observing the odontoblasts in fresh state, the saline solution was substituted with 0.125%, 0.25% 0.5%, 1% and 2% diluted phenol solutions. The morphologic changes were examined with phase contrast microscope at intervals of 10, 30, and 60 minutes. The results were as follows: 1. In saline solution the odontoblast showed cytoplasmic swelling, slender cytoplasmic process, thick rim nuclear membrane with increased dark contrast, and prominent nucleoli and chromatin granules with lapse of time intervals. In accordance with time intervals, blisters appeared in the supranuclear zone and increased its size and moved outward of the cytoplasmic membrane resulting detachment from the cell membrane. The phase dark cytoplasmic granules were increased in its dark contrast and in its size. 2. In 0.125% and 0.25% phenol solution, the odontoblasts and its nucleus shrunk immeidately and its contrast of cellular components was increased. With the lapse of time, the phase-dark granules in cytoplasm were aggregated, and several blisters were formed in and out of the cells. The outline of cytoplasmic membrane was also obscured. 3. In 0.5% phenol solution, the necleus shrunk at once, but soon after it revealed karyolysis accompanying dark contrast of neclear components such as nuclear membrane, nucleoli, and chromatin granules. On the contrary, the cytoplasmic granules showed aggregation and increased dark contrast, small and large blisters were formed in and out of the odontblasts and the outline of cytoplasmic membrane became obscured. 4. In 1% phenol solution, it showed shrinkage of odontblasts and its nuclei with thick rim nuclear membrane, aggregation of chromatin granules and occasional karyorrhexis. The dark contrast of cytoplasmic granules was increased and aggregated each other. But the blister formation could not be found. 5. In 2% phenol solution, it showed the shrinkage of odontoblasts and pyknotic nuclei with increased dark contrast of nucleoli and chromatin granules. The number of cytoplasmic granules was decreased by aggregation. But the blister formation could not be found as in 1% phenol solution.

  • PDF

Pattern-Recognition Receptor Signaling Initiated From Extracellular, Membrane, and Cytoplasmic Space

  • Lee, Myeong Sup;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Invading pathogens are recognized by diverse germline-encoded pattern-recognition receptors (PRRs) which are distributed in three different cellular compartments: extracellular, membrane, and cytoplasmic. In mammals, the major extracellular PRRs such as complements may first encounter the invading pathogens and opsonize them for clearance by phagocytosis which is mediated by membrane-associated phagocytic receptors including complement receptors. The major membrane-associated PRRs, Toll-like receptors, recognize diverse pathogens and generate inflammatory signals to coordinate innate immune responses and shape adaptive immune responses. Furthemore, certain membrane-associated PRRs such as Dectin-1 can mediate phagocytosis and also induce inflammatory response. When these more forefront detection systems are avoided by the pathogens, cytoplasmic PRRs may play major roles. Cytoplasmic caspase-recruiting domain (CARD) helicases such as retinoic acid-inducible protein I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5), mediate antiviral immunity by inducing the production of type I interferons. Certain members of nucleotide-binding oligomerization domain (NOD)-like receptors such as NALP3 present in the cytosol form inflammasomes to induce inflammatory responses upon ligand recognition. Thus, diverse families of PRRs coordinately mediate immune responses against diverse types of pathogens.

ALCAM is a Novel Cytoplasmic Membrane Protein in TNF-α Stimulated Invasive Cholangiocarcinoma Cells

  • Adisakwattana, Poom;Suwandittakul, Nantana;Petmitr, Songsak;Wongkham, Sopit;Sangvanich, Polkit;Reamtong, Onrapak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3849-3856
    • /
    • 2015
  • Background: Cholangiocarcinoma (CCA), or bile duct cancer, is incurable with a high mortality rate due to a lack of effective early diagnosis and treatment. Identifying cytoplasmic membrane proteins of invasive CCA that facilitate cancer progression would contribute toward the development of novel tumor markers and effective chemotherapy. Materials and Methods: An invasive CCA cell line (KKU-100) was stimulated using TNF-${\alpha}$ and then biotinylated and purified for mass spectrometry analysis. Novel proteins expressed were selected and their mRNAs expression levels were determined by real-time RT-PCR. In addition, the expression of ALCAM was selected for further observation by Western blot analysis, immunofluorescent imaging, and antibody neutralization assay. Results: After comparing the proteomics profile of TNF-${\alpha}$ induced invasive with non-treated control cells, over-expression of seven novel proteins was observed in the cytoplasmic membrane of TNF-${\alpha}$ stimulated CCA cells. Among these, ALCAM is a novel candidate which showed significant higher mRNA- and protein levels. Immunofluorescent assay also supported that ALCAM was expressed on the cell membrane of the cancer, with increasing intensity associated with TNF-${\alpha}$. Conclusions: This study indicated that ALCAM may be a novel protein candidate expressed on cytoplasmic membranes of invasive CCA cells that could be used as a biomarker for development of diagnosis, prognosis, and drug or antibody-based targeted therapies in the future.

Syndecan-4 cytoplasmic domain could disturb the multilamellar vesicle

  • Kim, Suhk-Mann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Syndecan-4 cytoplasmic domain was tested to confirm the interactions with the bilayer membrane using $^{31}P$ solid-state NMR measurements. Syndecan-4 was known as a coreceptor with integrins in the cell adhesion. The syndecan-4 V region is not understood of its functional roles and tested its ability of the interaction with multilamellar vesicles. The $^{31}P$ powder pattern was dramatically changed and showed isotropic peak which imply the bilayer membrane changed its topology to the micelle-like structure. Especially, phosphatidylcholine membrane was affected this effect more than phosphatidylethanolamine membrane.

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Salmonella Typhimurium

  • Hyungkeun Song;Eunna Choi ;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1130-1140
    • /
    • 2023
  • Among the AAA+ proteases in bacteria, FtsH is a membrane-bound ATP-dependent metalloprotease, which is known to degrade many membrane proteins as well as some cytoplasmic proteins. In the intracellular pathogen Salmonella enterica serovar Typhimurium, FtsH is responsible for the proteolysis of several proteins including MgtC virulence factor and MgtA/MgtB Mg2+ transporters, the transcription of which is controlled by the PhoP/PhoQ two-component regulatory system. Given that PhoP response regulator itself is a cytoplasmic protein and also degraded by the cytoplasmic ClpAP protease, it seems unlikely that FtsH affects PhoP protein levels. Here we report an unexpected role of the FtsH protease protecting PhoP proteolysis from cytoplasmic ClpAP protease. In FtsH-depleted condition, PhoP protein levels decrease by ClpAP proteolysis, lowering protein levels of PhoP-controlled genes. This suggests that FtsH is required for normal activation of PhoP transcription factor. FtsH does not degrade PhoP protein but directly binds to PhoP, thus sequestering PhoP from ClpAP-mediated proteolysis. FtsH's protective effect on PhoP can be overcome by providing excess ClpP. Because PhoP is required for Salmonella's survival inside macrophages and mouse virulence, these data implicate that FtsH's sequestration of PhoP from ClpAP-mediated proteolysis is a mechanism ensuring the amount of PhoP protein during Salmonella infection.

The electron microscopic studies on conidio spores of Aspergillus niger (Aspergillus niger 균(菌)의 분생포자(分生胞子)에 관한 전자현미경적(電子顯微鏡的) 연구(硏究))

  • So, In-Young
    • Applied Microscopy
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1969
  • Conidio spores of Aspergillus niger (strain No. NRRL 330) cultured on potato dextrose agar media were studied by electron microscopy, using the thin sectioning techniques. Conidio spores to be sectioned were fixed by triple methods with $K_2Cr_2O_7$, Glutaraldehyde and $OsO_4$. After dehydrated with alcohol, the specimens were embedded in metacrylate and epon resin media, and thinly sectioned by Porter-Blum MT-2. After sectioned these specimens were negative-stained with uranyl acetate and observed. by Hitachi HS-6 electron microscope. The results of this experiment were summarized as follows. 1. The structures of spore ,wall system seem to be formed 4 layers; exosporium, basal layer, spore coat and unit cell membrane. The protuberance of spore surface that was looked like hair appears to be protrusived from the basal layer. 2. The 3 layers of unit cell membrane was constituted outer layer membrane, inner layer membrane and inter-mediate light layer. 3. The structures of intra cytoplasmic membrane appear as spiral form which was consisted of 3 layers membrane system; outer membrane, inner membrane, and intermediate layer, which has pits. 4. The cement substance of spore coat and cortex may be changed quantitatively by physiological state in cell. 5. In some cases, we observed that the ribosome was transformed into poly ribosome group, and the storage materials and the protein crystals were changed variously. It. has been suggested that the morphological change of some cytoplasmic materials may be caused by some specialized function of the physiological stage.

  • PDF

Effects of Signal Peptide and Adenylate on the Oligomerization and Membrane Binding of Soluble SecA

  • Shin, Ji-Yeun;Kim, Mi-Hee;Ahn, Tae-Ho
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok;Eva, Foyjunnaher;Kim, Sang-Yun;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.315-321
    • /
    • 2018
  • Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.