• 제목/요약/키워드: cytochrome oxidase

검색결과 528건 처리시간 0.026초

Change in the Conformation of $p47^{phox}$ by Sodium Dodecyl Sulfate, an Activator of the Leukocyte NADPH Oxidase

  • Park, Jeen-Woo;Park, Hee-Sae
    • BMB Reports
    • /
    • 제31권3호
    • /
    • pp.227-232
    • /
    • 1998
  • The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of $O_2^-$ from oxygen using NADPH as an electron donor. Dormant in resting neutrophils, the enzyme acquires catalytic activity when the cells are exposed to appropriate stimuli. During activation, the cytosolic oxidase components $p47^{phox}$ and $p67^{phox}$ migrate to the plasma membrane, where they associate with cytochrome $b_{558}$, a membrane-bound flavohemoprotein, to assemble the active oxidase. The oxidase can be activated in a cell-free system; the activating agent usually employed is an anionic amphiphile such as sodium dodecyl sulfate (SDS). Because $p47^{phox}$ can translocate by itself during activation, the conformational change in $p47^{phox}$ may be responsible for the activation of NADPH oxidase. We show here that the treatment of $p47^{phox}$ with SDS leads to an increase in the reactivity of the sutbydryl group of cysteines toward N-ethylmaleimide, indicating that the conformational change occurs when $p47^{phox}$ is exposed to SDS. We propose that this change in conformation results in the appearance of a binding site through which $p47^{phox}$ interacts with cytochrome $b_{558}$during the activation process.

  • PDF

Three Aetideid Species of Copepods (Copepoda: Calanoida: Aetideidae) from East Sea of Korea

  • Lim, Byung-Jin;Song, Sung-Joon;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • 제27권1호
    • /
    • pp.35-46
    • /
    • 2011
  • Three aetideid copepods collected from the East Sea of Korea are described: Bradyidius angustus (Tanaka, 1957), Gaetanus minutus (Sars, 1907), and Aetideus acutus Farran, 1929. The former two species are new to the Korean copepod fauna. The sequences of cytochrome c oxidase subunit 1 were determined to be the molecular characteristics of these three species.

Two species of Tortanus (Eutortanus) (Copepoda: Calanoida: Tortanidae) new to Korea

  • Lim, Byung-Jin;Min, Gi-Sik
    • Journal of Species Research
    • /
    • 제3권1호
    • /
    • pp.27-34
    • /
    • 2014
  • Two species of Tortanus (Eutortanus) are newly recorded from shallow Korean waters: T. (E.) vermiculus Shen, 1955 and T. (E.) komachi Itoh, Ohtsuka and Sato, 2001. As a result of this study, five species are reported in the subgenus of the family Tortanidae in Korea. The sequence of cytochrome c oxidase subunit 1 (CO1) is also provided as a molecular characteristic.

Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation

  • Kim, Hong Pyo
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.491-496
    • /
    • 2014
  • Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600~1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.

Site-directed Mutagenesis of Five Conserved Residues of Subunit I of the Cytochrome cbb3 Oxidase in Rhodobacter capsulatus

  • Ozturk, Mehmet;Gurel, Ekrem;Watmough, Nicholas J.;Mandaci, Sevnur
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.697-707
    • /
    • 2007
  • Cytochrome $cbb_3$ oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the $cbb_3$ oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the $cbb_3$ oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.

Involvement of Cytochrome c Oxidase Subunit I Gene during Neuronal Differentiation of PC12 Cells

  • Kang, Hyo-Jung;Chung, Jun-Mo;Lee, See-Woo
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 1997
  • It is becoming increasingly evident that significant changes in gene expression occur during the course of neuronal differentiation. Thus, it should be possible to gain information about the biochemical events by identifying differentially expressed genes in neuronal differentiation The PC12 cell line is a useful model system to investigate the molecular mechanism underlying neuronal differentiation and has been used extensively for the study of the molecular events that underlie the biological actions of nerve growth factor (NGF). In this study, we report an application of the recently described mRNA differential display method to analyze differential gene expression during neuronal differentiation. Using this technique, we have identified several cDNA tags expressed differentially during neuronal differentiation. Interestingly, one of these clones was cytochrome c oxidase subunit I (COX I) gene. The differential expression of COX I gene was confirmed by Northern blot analysis as well as RT-PCR. Southern blot analysis of the genomic DNA of PC12 cells revealed that COX I is a single gene. Induction of the oxidative enzyme might reflect the energy requirement in neuronal differentiation.

  • PDF

Molecular phylogeny of parasitic Platyhelminthes based on sequences of partial 28S rDNA D1 and mitochondrial cytochrome c oxidase subunit I

  • Lee, Soo-Ung;Chun, Ha-Chung;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • 제45권3호
    • /
    • pp.181-190
    • /
    • 2007
  • The phylogenie relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenie relationships. The phylogenie patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.

Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

  • Jeon, Hyung-Bae;Choi, Seung-Ho;Suk, Ho Young
    • Animal Systematics, Evolution and Diversity
    • /
    • 제28권4호
    • /
    • pp.269-278
    • /
    • 2012
  • Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.

Genetic diversity of the Asian shore crab, Hemigrapsus sanguineus, in Korea and Japan inferred from mitochondrial cytochrome c oxidase subunit I gene

  • Yoon, Moon-Geun;Hong, Sung-Eic;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Animal cells and systems
    • /
    • 제15권3호
    • /
    • pp.243-249
    • /
    • 2011
  • The genetic diversity and population history of the Asian shore crab, Hemigrapsus sanguineus, were investigated with a nucleotide sequence analysis of 536 base pairs (bp) of the mitochondrial cytochrome c oxidase subunit I gene (COI) in 111 samples collected from four populations in Korea and one in Japan. In total, 28 haplotypes were defined by 27 variable nucleotide sites in the COI region examined. The observed haplotypes had a shallow haplotype genealogy and no geographical associations. Most of the populations had high haplotype diversity (0.656-0.788) and low nucleotide diversity (0.00165-0.00244), and significant negative values for Fu's $F_S$, suggesting rapid and recent population growth from an ancestral population and sudden population expansion. The pairwise fixation indices ($F_{ST}$) estimated with the exact test and the migration rates indicate that substantial gene flow occurs among these populations as a result of sea currents, except between the Yellow Sea coast of Korea (BUA) and the Pacific Ocean coast of Japan (JPA). These two populations (BUA and JPA) showed significant genetic differentiation and low migration rate.