Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation

  • Received : 2014.07.09
  • Accepted : 2014.07.31
  • Published : 2014.11.30


Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600~1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.



Supported by : National Research Foundation


  1. Abergel, R. P., Meeker, C. A., Lam, T. S., Dwyer, R. M., Lesavoy, M. A. and Uitto, J. (1984) Control of connective tissue metabolism by lasers: recent developments and future prospects. J. Am. Acad. Dermatol. 11, 1142-1150.
  2. Carroll, J. D., Milward, M. R., Cooper, P. R., Hadis, M., and Pain, W. M. (2014) Developments in low level light therapy (LLLT) for dentistry. Dent. Mater. 30, 465-475.
  3. Chen, W. W., Birsoy, K., Mihaylova, M. M., Snitkin, H., Stasinski, I., Yucel, B., Bayraktar, E. C., Carette, J. E., Clish, C. B., Brummelkamp, T. R., Sabatini, D. D. and Sabatini, D. M. (2014) Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep. 7, 27-34.
  4. Conlan, M. J., Rapley, J. W. and Cobb, C. M. (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J. Clin. Periodontol. 23, 492-496.
  5. Curcio, J. A. and Petty, C. C. (1951) The near infrared absorption spectrum of liquid water. J. Optic. Soc. Am. 41, 302-304.
  6. Desmet, K. D., Paz, D. A., Corry, J. J., Eells, J. T., Wong-Riley, M. T., Henry, M. M., Buchmann, E. V., Connelly, M. P., Dovi, J. V., Liang, H. L., Henshel, D. S., Yeager, R. L., Millsap, D. S., Lim, J., Gould, L. J., Das, R., Jett, M., Hodgson, B. D., Margolis, D. and Whelan, H. T. (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed. Laser Surg. 24, 121-128.
  7. Divakaruni, A. S., Wiley, S. E., Rogers, G. W., Andreyev, A. Y., Petrosyan, S., Loviscach, M., Wall, E. A., Yadava, N., Heuck, A. P., Ferrick, D. A., Henry, R. R., McDonald, W. G., Colca, J. R., Simon, M. I., Ciaraldi, T. P. and Murphy, A. N. (2013) Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. U S A. 110, 5422-5427.
  8. Eells, J. T., Henry, M. M., Summerfelt, P., Wong-Riley, M. T., Buchmann, E. V., Kane, M., Whela, N. T. and Whelan, H. T. (2003) Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc. Natl. Acad. Sci. U S A. 100, 3439-3444.
  9. Eells, J. T., Wong-Riley, M. T., VerHoeve, J., Henry, M., Buchman, E. V., Kane, M. P., Gould, L. J., Das, R., Jett, M., Hodgson, B. D., Margolis, D. and Whelan, H. T. (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4, 559-567.
  10. Karu, T. I. (2008) Mitochondrial signaling in mammalian cells activated by red and near IR radiation. Photochem. Photobiol. 84, 1091-1099.
  11. Kim, H. P., Ryter, S. W. and Choi, A. M. (2006) CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 46, 411-449.
  12. Korolnek, T. and Hamza I. (2014) Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front. Pharmacol. 5, 126.
  13. Lane, N. (2006) Power games. Nature 443, 901-903.
  14. Lee, G., Wong, E. and Mason, D. T. (1996) New concepts in pain management and in the application of low-power laser for relief of cervicothoracic pain syndromes. Am. Heart J. 132, 1329-1334.
  15. Lee, S. J., Zhang, J., Choi, A. M. and Kim, H. P. (2013) Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid. Med. Cell. Longev. 2013, 327167.
  16. Mester, E., Mester, A. F. and Mester, A. (1985) The biomedical effects of laser application. Lasers Surg. Med. 5, 31-39.
  17. Mester, E., Spiry, T., Szende, B. and Tota, J. G. (1971) Effect of laser rays on wound healing. Am. J. Surg. 122, 532-535.
  18. Moncada, S. and Bolanos, J. P. (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97, 1676-1689.
  19. Munro, A. W., Girvan, H. M., McLean, K. J., Cheesman, M. R. and Leys, D. (2009) Heme and Hemoproteins, In Tetrapyrrole: Birth, Life and death (M. J. Warren and A. G. Smith, Ed.), pp 160-183. Landes Bioscience and Springer Science, Austin.
  20. Park, J. H., Lee, S., Cho, D. H., Park, Y. M., Kang, D. H. and Jo, I. (2013) Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem. Biophys. Res. Commun. 436, 601-606.
  21. Pollack, G. H. (2013) The fourth phase of water. Ebner & Sons publishers, Seattle.
  22. Quirk, B. J., Desmet, K. D., Henry, M., Buchmann, E., Wong-Riley, M., Eells, J. T. and Whelan, H. T. (2012) Therapeutic effect of near infrared (NIR) light on Parkinson's disease models. Front. Biosci. 4, 818-823.
  23. Reddy, G. K., Stehno-Bittel, L. and Enwemeka, C. S. (2001) Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 9, 248-255.
  24. Rich, P. R. and Iwaki, M. (2007) A comparison of catalytic site intermediates of cytochrome c oxidase and peroxidases. Biochemistry (Moscow) 72, 1047-1055.
  25. Rochkind, S., Geun, S. and Shainberg, A. (2013) Phototherapy and nerve injury: focus on muscle response. Int. Rev. Neurobiol. 109, 99-109.
  26. Santana-Blank, L., Rodriguez-Santana, E., Santana-Rodriguez, K. E. (2013) Photobiomodulation of aqueous interfaces: finding evidence to support the exclusion zone in experimental and clinical studies. Photomed. Laser Surg. 31, 461-462.
  27. Schindl, A., Schindl, M., Pernerstorfer-Schon, H. and Schindl, L. (2000) Low-intensity laser therapy: a review. J. Investig. Med. 48, 312-326.
  28. Slebos, D. J., Ryter, S. W., van der Toorn, M., Liu, F., Guo, F., Baty, C. J., Karlsson, J. M., Watkins, S. C., Kim, H. P., Wang, X., Lee, J. S., Postma, D. S., Kauffman, H. F. and Choi, A. M. (2007) Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am. J. Respir. Cell Mol. Biol. 36, 409-417.
  29. Tanaka, Y., Matsuo, K., Yuzuriha, S., Yan, H. and Nakayama, J. (2010) Non-thermal cytocidal effect of infrared irradiation on cultured cancer cells using specialized device. Cancer Sci. 101, 1396-1402.
  30. Wedlock, P., Shephard, R. A., Little, C. and McBurney, F. (1996) Analgesic effects of cranial laser treatment in two rat nociception models. Physiol. Behav. 59, 445-448.
  31. Whelan, H. T., Buchmann, E. V., Dhokalia, A., Kane, M. P., Whelan, N. T., Wong-Riley, M. T., Eells, J. T., Gould, L. J., Hammamieh, R., Das, R. and Jett, M. (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J. Clin. Laser Med. Surg. 21, 67-74.
  32. Wong-Riley, M. T., Bai, X., Buchmann, E. and Whelan, H. T. (2001) Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 12, 3033-3037.
  33. Wong-Riley, M. T., Liang, H. L., Eells, J. T., Chance, B., Henry, M. M., Buchmann, E., Kane, M. and Whelan, H. T. (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J. Biol. Chem. 280, 4761-4771.
  34. Yaakobi, T., Maltz, L. and Oron, U. (1996) Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He-Ne) irradiation. Calcif. Tissue Int. 59, 297-300.
  35. Ying, R., Liang, H. L., Whelan, H. T., Eells, J. T. and Wong-Riley, M. T. (2008) Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res. 1243, 167-173.
  36. Zaobornyj, T. and Ghafourifar, P. (2012) Strategic localization of heart mitochondrial NOS: a review of the evidence. Am. J. Physiol. Heart Circ. Physiol. 303, H1283-1293.
  37. Zhang, Y., Song, S., Fong, C. C., Tsang, C. H., Yang, Z. and Yang, M. (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J. Invest. Dermatol. 120, 849-857.
  38. Zuckerbraun, B. S., Chin, B. Y., Bilban, M., d'Avila, J. C., Rao, J., Billiar, T. R. and Otterbein, L. E. (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21, 1099-1106.

Cited by

  1. Bisdemethoxycurcumin Induces Apoptosis in Activated Hepatic Stellate Cells via Cannabinoid Receptor 2 vol.20, pp.1, 2015,
  2. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation vol.39, pp.6, 2017,
  3. “Quantum Leap” in Photobiomodulation Therapy Ushers in a New Generation of Light-Based Treatments for Cancer and Other Complex Diseases: Perspective and Mini-Review vol.34, pp.3, 2016,
  4. Biological effects and medical applications of infrared radiation vol.170, 2017,
  5. Analysis of the Spectral Characteristics of Pure Moxa Stick Burning by Hyperspectral Imaging and Fourier Transform Infrared Spectroscopy vol.2016, 2016,
  6. The effects of narrowbands of visible light upon some skin disorders: a review vol.38, pp.4, 2016,
  7. Mechanisms and Effects of Transcranial Direct Current Stimulation vol.15, pp.1, 2017,
  8. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues vol.26, pp.3, 2016,
  9. An extension of a multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne vol.57, pp.1, 2018,
  10. Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: the EUREKA trial vol.27, pp.11, 2018,
  11. Implementing TIMERS: the race against hard-to-heal wounds vol.28, pp.3, 2014,
  12. Treatment of Neurodegeneration: Integrating Photobiomodulation and Neurofeedback in Alzheimer's Dementia and Parkinson's: A Review vol.37, pp.10, 2014,
  13. Assessment of Human Gingival Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450, and 405 nm)-Preliminary Report vol.11, pp.2, 2014,
  14. Effects of Photobiomodulation Therapy Combined With Exercise in Patients Who Have Chronic Low Back Pain: Protocol for a Randomized Controlled Trial vol.101, pp.11, 2014,