• Title/Summary/Keyword: cytochrome C release

Search Result 237, Processing Time 0.021 seconds

The Essential Oil of Artemisia iwayomogi Kitamura Induces Apoptosis on Human Oral Epidermoid Carcinoma Cells

  • Jeong, Mi-Ran;Cha, Jeong-Dan;Lee, Kyung-Yeol;Kil, Bong-Seop;Han, Jong-Hyun;Lee, Young-Eun
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.531-536
    • /
    • 2007
  • The aerial part of Artemisia iwayomogi Kitamura has traditionally been used for inflammation, infectious disease, cancer, pyretic, diuretic, liver protective effect, and choleretic purposes in Korea. We investigated that the essential oil induces apoptosis in KB cell as evidenced by Hoechst-33258 dye staining, flow cytometry (cell cycles), and DNA fragmentation for nuclear condensation and Western blotting for activation of caspases-3, -8, -9, Bax, Bcl-2, cytochrome c, and poly (ADP-ribose) polymerase (PARP) cleavage. In the present study, we found that the essential oil could induce apoptosis in KB cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed as a dose-dependent. The essential oil-induced apoptotic cell death was accompanied by up-regulation of Bax and down-regulation of Bcl-2. The essential oil also caused the loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytosol. These findings indicate that mitochondrial pathways might be involved in the essential oil-induced apoptosis and enhance our understanding of the anticancer function of the essential oil in herbal medicine.

Anti-cancer effect of Eriocaulon sieboldianum through the activation of caspase-3 in human leukemia cell line, HL-60 cells

  • Kim, Su-Jin;Lee, Gi-Tak;Lee, Bo-Ra;Jeon, Kwon-Su;Rim, Hong-Kun;Bang, Jun-Ho;Kim, Yang-Gwi;Myung, No-Yil;Moon, Phil-Dong;Kim, Na-Hyung;Choi, In-Young;Choi, Young-Jin;Kang, In-Cheol;Um, Jae-Young;Hong, Seung-Heon;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.186-191
    • /
    • 2009
  • Eriocaulon sieboldianum (ES) is used in traditional oriental medicine for various medicinal purposes including headache, toothache, and inflammation. However, the anti-cancer effect of the ES is still not fully understood. In the present study, the human leukemia cell line HL-60 was used to characterize the apoptotic effects of ES. ES induced cytotoxicity of HL-60 cells in a dose- and time-dependent manner. ES induced the generation of reactive oxygen species, and the release of cytochrome c in a dose-dependent manner. In addition, we showed that ES-induced apoptosis was accompanied by activation of caspase-3. Taken together, our results demonstrate that ES possesses anti-cancer activity in HL-60 cells.

The Effects of Gamigunshimtang on the Ischemic Heart Disease & Heart cell in Rats (허혈성심장(虛血性心臟) 및 심장세포(心臟細胞)에 대(對)한 가미건심탕(加味健心湯)의 실험적(實驗的) 연구(硏究))

  • Park, Jung-Mi;Moon, Sang-Kwan;Go, Chang-Nam;Cho, Gi-Ho;Kim, Kyung-Suk;Bae, Hyung-Sup;Lee, Kyung-Sup
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.251-270
    • /
    • 1998
  • The effects of Gamigunshimtang on the isolated perfused ischemic heart in rats, heart rates, left ventricular pressure, cardiac blood flow and cardiotoxicity were stu.died in H9C2 myoblast cell, myocardial slice culture The results were as follows: 1. The administration of Gamigunshimtang to the rat recovered effectively heart rate, left ventricular pressure and flow rate from the experimental ischemia in perfused rat heart. The release of lactic dehydrogenase after the ischemia also decreased compared to the control group. 2. The administration of Gamigunshimtang to H9C2 myoblast culture enhanced the cell proliferation and protected against doxorubicin and allylamine induced release of the lactic dehydrogenase into the culture medium. It also protected effectively against doxorubicin and allylamine induced decrease of Ca ATPase activity and the increase of NADPH-cytochrome C reductase activity in the microsome. 3. The administration of Gamigunshimtang to the rat myocardial slice culture protected effectively against doxorubicin and allylamine induced decreases of protein synthesis and ATP content, and increases of cvtosolic enzyme, creatin kinase into the medium and lipid peroxidation.

  • PDF

A Combination of PG490 and Lipopolysaccharide Induce Apoptosis through Activation of Casapase-3 and Downregulation of cIAP1 and XIAP in Human Astroglioma Cell

  • Lee, Tae-Jin;Woo, Kyung-Jin;Park, Jong-Wook;Kwon, Taeg-Kyu
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.99-104
    • /
    • 2005
  • Background: Malignant gliomas are the most common primary tumors in the central nervous system. Methods: We investigated the combined effect of PG490 and LPS on the induction of the apoptotic pathway in human astroglioma cells. Results: Treatment of U87 cells with combination of 50nM of PG490 and $50{\mu}g/ml$ of LPS resulted in increased internucleosomal DNA fragmentation, cleavage of PLC-${\gamma}1$, and downregulation of cIAP1 and XIAP. The combination of LPS and PG490 treatment-induced apoptosis is mediated through the activation of caspase, which is inhibited by the caspase inhibitor, z-VAD-fmk. Also, release of cytochrome c was found in PG490 and LPS-cotreated U87 cell. Conclusion: Taken together, combination of PG490 and LPS appears to be a potent inducer of apoptosis in astrogliaoma cells, and might have some benefit in the treatment of glioma patients.

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

Effects of Psidium guajava Leaf Extract on Apoptosis Induction Through Mitochondrial Dysfunction in HepG2 Cells

  • Nguyen, Van-Tinh;Ko, Seok-Chun;Oh, Gun-Woo;Heo, Seong-Yeong;Jung, Won-Kyo
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • The anticancer activity of guava (Psidium guajava L.) leaf extract (GLE) occurs via the induction of apoptosis in cancer cells. However, the mechanism behind GLE-induced apoptosis in the human hepatocellular carcinoma cell line HepG2 remains unclear. In the present study, we investigated the apoptotic effects and mechanism of action of GLE in cultured HepG2 cells. The results showed that GLE induced reactive oxygen species (ROS) synthesis and disrupted the mitochondrial membrane potential (${\Delta}{\Psi}m$). Moreover, GLE increased the expression of apoptotic pathway proteins, such as the cleaved forms of caspase-3, -8, and -9; the translocation of Bax and cytochrome c (cyt-c) from the mitochondria to the cytosol; and the downregulation of Bcl-2. In addition, p53 protein expression was increased upon GLE treatment. These observations indicate that the GLE-induced apoptosis in HepG2 cells is mediated by mitochondrial ROS generation, followed by caspase activation and cyt-c release, suggesting that GLE may be a promising candidate for the development of novel drugs for the treatment of liver cancers.

Involvement of Antiapoptotic Signals in Rat PC12 Cells Proliferation by Cyclosporin A Treatment

  • Park, Ji-Il;Lee, Guem-Sug;Jeong, Yeon-Jin;Kim, Byung-Kuk;Kim, Jae-Hyung;Lim, Hoi-Soon;Kim, Sun-Hun;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.51-57
    • /
    • 2007
  • Cyclosporin A (CsA) plays an important role in clinical medicine and basic biology as an immunosuppressant and a mitochondrial permeability blocker, respectively. It was reported that CsA has a protective role by preventing apoptosis and promoting the proliferation in severed neurons. However, the molecular mechanisms for CsA-induced neuronal cell proliferation are unclear. In this study, we examined the mechanisms underlying the CsA-induced proliferation of PC12 cells. CsA increased the viability of PC12 cells in a dose(over $0.1{\sim}10\;{\mu}M$)-and time-dependent manner. The level of ROS generation was decreased in the CsA-treated PC12 cells. Expression of Bcl-2, an antiapoptotic molecule that inhibits the release of cytochrome c from the mitochondria into the cytosol, was upregulated, whereas Bax, a proapototic molecule, was not changed in the CsA-treated PC12 cells. CsA downregulated the mRNA expression of VDAC 1 and VDAC 3, but VDAC 2 was not changed in the CsA-treated PC12 cells. The level of cytosolic cytochrome c released from the mitochondria and the caspase-3 activity were attenuated in the CsA-treated PC12 cells. These results suggest that the mitochondria-mediated apoptotic signal and Bcl-2 family may play an important role in CsA-induced proliferation in PC12 cells.

Mechanism of Apoptosis Induced by Spermine in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포주에 있어서 spermine에 의해 유도된 세포사멸 기작)

  • Jang, Eun-Seong;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1177-1185
    • /
    • 2008
  • In the present work, we show that spermine (spm)-induced cytotoxicity is due to the mitochondrial-dependent pathway triggered by the intracellular $Ca^{2+}$ increase in MCF-7 human breast cancer cells. Spm induced the intracellular $Ca^{2+}$ increase in a dose-dependent manner in the medium containing 1.5 mM $Ca^{2+}$. Even in the $Ca^{2+}$-free medium, spm could induce a minor $Ca^{2+}$ increase in a dose-dependent fashion, suggesting a probable leak from the internal storage. The cytotoxic effect of $Ca^{2+}$ could be further proved by using either BAPTA or ionophore. Spm-induced $Ca^{2+}$ increase led to the release of cytochrome c from mitochondria into the cytosol and the change of mitochondrial membrane potential. In MCF-7 cells, caspase-7 plays a key role in the downstream of apoptosis because caspase-3 is absent. In the cells treated with spm, the cleavage of caspase-7 and -12 was increased almost two-fold. The level of anti-apoptotic Bcl-2 protein decreased to 35% of the control; however, the cells showed increased expression of pro-apoptotic Bax protein about two-fold in response to spm. These results imply that the apoptotic signaling pathway activated by spm is likely to be mediated via the mitochondrial-dependent pathway.

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells (당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과)

  • Kim, Byung-Wan;Yun, Hyun-Joung;Jeon, Hyeon-Suk;Yun, Hyung-Joong;Kim, Chang-Hyun;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF