• Title/Summary/Keyword: cylindrospermopsin

Search Result 4, Processing Time 0.018 seconds

Analysis of Potential Toxigenicity and Phylogeny using Target Genes in Aphanizomenon flos-aquae (Cyanophyceae) strains isolated from the Nakdong River (낙동강에서 분리된 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 목표 유전자를 이용한 잠재적 독소 생성능 및 계통학적 분석)

  • Ryu, Hui-Seong;An, Sung-Min;Lim, Chang-Kun;Shin, Ra-Young;Park, Jong-Guen;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.137-147
    • /
    • 2017
  • The identity of toxin producers remains only hypothesis unless there were identified by strain isolation and analytical confirmation of both the cyanotoxin production and the genetic identity of the monoculture. The purposes of this study were to identify a morphologic and phylogenetic classification in Aphanizomenon flos-aquae strains isolated from the Nakdong River and to investigate the potential ability of the strains to produce toxins such as saxitoxin and cylindrospermopsin using target genes. The 16S rRNA and sxtA, sxtI, cyrA, cyrJ genes were analyzed on two strains (DGUC001, DGUC003) isolated from the Nakdong River. Morphological features of the strains were observed a shape of aggregated trichomes in parallel fascicles which can reach up to macroscopic size and a hyaline terminal cell without aerotope. In addition, the 16S rRNA phylogenetic analyses showed that the strains were identified as the same species with high genetic similarity of 98.4% and grouped within a monospecific andsupported cluster I of Aphanizomenon flos-aquae selected from GenBank of the NCBI. The cyrA and cyrJ genes encoding for the cylindrospermopsin-biosynthesis were not detected in the present study. The sxtA gene was in detected both the two strains, whereas the sxtI gene which had been suggested as a suitable molecular marker to detect saxitoxin-producing cyanobacteria was not found both the strains. Thus, the two strains isolated from Nakdong River were identified as the same species of Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault 1888, the two strains were confirmed as potential non-producing strains of the saxitoxin and cylindrospermopsin.

Response of Growth and Toxigenicity to Varying Temperature and Nutrient Conditions in Aphanizomenon flos-aquae (Cyanophyceae) (환경조건에 따른 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 성장 반응 및 독소 생성)

  • Ryu, Hui-Seong;Shin, Ra-Young;Lee, Jung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.538-545
    • /
    • 2017
  • The purpose of this study is to investigate growth response and toxigenicity under various temperature and nutritional conditions, in order to understand the physioecological characteristics of Aphanizomenon flos-aquae, which is a bloom-forming cyanobacterium in the Nakdong River. The strain was inoculated into media under combinations of four temperatures (4, 12, 21, $30^{\circ}C$) and three nutrients (modified CB medium, P-depleted CB medium, N-depleted CB medium) for 28 days. The algae-inhibition tests were performed to assess the potential allelopathic effects of the strains' filtrates on the growth of four algae strains (Microcystis aeruginosa, Aulacoseria ambigua f. spiralis, Aphanizomenon flos-aquae, Scenedesmus obliquus). Toxin production of a strain was measured by Enzyme-Linked ImmunoSolbent Assay (ELISA). The optimal growth temperature (Topt) of strains was $19.9^{\circ}C$ ($18.3-21.2^{\circ}C$), and the temperature range for growth was from $-0.3^{\circ}C$ to $34.3^{\circ}C$. Specific growth rate (${\mu}$) in modified CB medium varied from 0.10 to $0.16day^{-1}$, and the maximum growth rate (${\mu}_{max}$) was $0.17day^{-1}$. Although growth curves under N-existed and N-depleted conditions were almost the same, growth under N-depleted condition was relatively slowed (${\mu}=0.09$ to $0.14day^{-1}$), with a decreased maximum cell density. However, growth under the P-depleted condition was restricted for all temperatures, Two stains of Aphanizomenon flos-aquae were confirmed as not producing toxins, because saxitoxin and cylindrospermopsin were not detected by ELISA. The exudates or filtrates from the Aphanizomenon flos-aquae (DGUC003) resulted in significant inhibition of algal growth on the Aulacoseira ambigua f. spiralis (DGUD001) and Aphanizomenon flos-aquae (DGUC001) (p < 0.01).

An Overview of Problems Cyanotoxins Produced by Cyanobacteria and the Solutions Thereby (남조류에서 발생하는 독소의 문제점과 대책)

  • Jeon, Bong-seok;Han, Jisun;Kim, Seog-Ku;Ahn, Jae-Hwan;Oh, Hye-Cheol;Park, Ho-Dong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.657-667
    • /
    • 2015
  • Cyanobacteria frequently dominate the freshwater phytoplankton community in eutrophic waters. Cyanotoxins can be classified according to toxicity as neurotoxin (Anatoxin-a, Anatoxin-a(s), Saxitoxins) or hepatotoxin (microcystins, nodularin, cylindrospermopsin). Microcystins are present within cyanobacterial cells generally, and they are extracted by the damage of cell membrane. It has been reported that cyanotoxins caused adverse effects and they are acculmulated in aquatic oganisms of lake, river and ocean. In natural, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, in process of water treatment, the use of copper sulfate to remove algal cells caused extraction of a mess of microcystins. Microcysitns are removed by physical, chemical and biological methods according to reports. The reduction of nutrients (N and P) inflow is basic method of prevention of cyanobacteria bloom formation. However, it is less effective than investigation because nutrients already present in the eutrophic lake. In natural lake, cyanobacteria bloom are not formed because macrophytes invade from coastal lake by eutrophication. Therefore, a coastal lake has to recover to prevent of cyanobacteria bloom formation.

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.