• Title/Summary/Keyword: cylindrical volume

Search Result 303, Processing Time 0.023 seconds

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Khan, Muhammad Shabaz;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.411-425
    • /
    • 2020
  • In this paper, the shell material has been taken as functionally graded material and their material quantity is located by the exponential volume fraction law. Moreover, the impact of ring supports around the shell circumference has been examined for their various positions along the shell axial length. These rings support restraints the radial displacement in the transverse direction. While the axial modal deformation functions have been estimated by characteristic beam functions and nature of materials used for construction of cylindrical shells. The fundamental natural frequency of cylindrical shell of parameter versus ratios of length- and height-to-radius for a wide range has been reported and investigated through the study. In addition, by increasing height-to-radius ratio resulting frequencies also increase and frequencies decrease on ratio of length-to-radius. Though the trends of frequency values of both ratios are converse to each other with three different boundary conditions. Also it is examined the position of ring supports with length-to radius ratio, height-to-radius ratio and varying the exponent of volume fraction. MATLAB software package has been utilized for extracting shell frequency spectra. The obtained results are confirmed by comparing with available literature.

Nonlinear Wave Forces on an Offshore Wind Turbine Foundation in Shallow Waters

  • Choi, Sung-Jin;Lee, Kwang-Ho;Hong, Keyyoung;Shin, Seong-Ho;Gudmestad, O.T.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • In this study, a 3D numerical model was used to predict nonlinear wave forces on a cylindrical pile installed in a shallow water region. The model was based on solving the viscous and incompressible Navier-Stokes equations for a two-phase flow (water and air) model and the volume of fluid method for treating the free surface of water. A new application was developed based on the cut-cell method to allow easy installation of complicated obstacles (e.g., bottom geometry and cylindrical pile) in a computational domain. Free-surface elevation, water particle velocities, and inline wave forces were calculated, and the results show good agreement with experimental data obtained by the Danish Hydraulic Institute. The simulation results revealed that the proposed model can, without the use of empirical formulas (i.e., Morison equation) and additional wave analysis models, reliably predict non-linear wave forces on an offshore wind turbine foundation installed in a shallow water region.

A Study for the Estimation of Joint Diameter Distribution Using the Trace Length Distribution from Cylindrical Window Survey (원통형조사창에서의 절리선 길이분포를 이용한 암반 내 절리직경분포 추정에 관한 연구)

  • Jeon, Ki-Hwan;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.386-393
    • /
    • 2011
  • This study suggests an algorithm for estimating joint diameter distribution in rock mass from the joint trace length distribution around a circular tunnel. For estimating the joint diameter distribution, the concept of Joint Center Volume (JCV) suggested by Song. (2005) was applied and the calculation method of JCV for the cylindrical window survey was developed by using the complete survey method. The estimated joint diameter distribution was verified against the original joint diameter distribution by Monte-Carlo simulation. It was observed that the estimated joint diameter distribution was converged to the original joint diameter distribution with less than 20% of error.

Design of intelligent estimation of composite fluid-filled shell for three layered active control structure

  • Ghamkhar, Madiha;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Naz, Muhammad Yasin;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • The vibrational characteristic of three-layered cylindrical shell (CS) submerged in fluid with the ring support has been studied. The inner and outer layer is supposed to construct by isotropic layer. The composition of central layer is of functionally graded material type. Acoustic Wave condition has been utilized to present the impact of fluid. The central layer of cylindrical shell (CS) varies by volume fraction law that has been expressed in terms of polynomial. The main shell frequency equation has been obtained by theory of Love's shell and Rayleigh-Ritz technique. The oscillation of natural frequency has been examined under a variety of end conditions. The dependence of axial model has been executed with the help of characteristic beam function. The natural frequencies (NFs) of functionally graded material (FGM) shell have been observed of cylindrical shell along the shell axial direction. Different physical parameters has been used to examine the vibration characteristics due to the effect of volume fraction law. MATLAB software has been used to get result.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Numerical Study of Wave Run-up around Offshore Structure in Waves

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • This study presents the wave run-up height and depression depth around offshore cylindrical structures according to the wave period. The present study employs the volume of fluid method with the realizable turbulence model based on a commercial computational fluid dynamics software called the "STAR-CCM+" to simulate a 3D incompressible viscous two-phase turbulent flow. The present results for the wave run-up height and depression depth with regard to the wave period are compared with those of the relevant previous experimental and numerical studies.

Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발)

  • 최성준;이정기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

Radiation in axisymmetric cylindrical coordinates with the modified discrete-ordinates method (축대칭 원통좌표계에서 수정된 구분종좌법에 의한 복사열전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.213-220
    • /
    • 1998
  • The conventional discrete-ordinates method (DOM) is modified and developed for the analysis of two-dimensional axisymmetric cylindrical enclosure with curved wall. The objective of the present work is to extend the capability of the conventional DOM into a general axisymmetric geometry like nozzle-shaped enclosure, by adopting the arbitrary control angle as was done in the finite-volume method (FVM), while keeping the same two-dimensional solution procedure as in the conventional DOM. The present method is validated by applying it to three different benchmark problems of axisymmetric enclosure containing absorbing, emitting and scattering medium. Results presented in this work not only support the solution accuracy, but also moderate efficiency in the numerical calculation of axisymmetric radiation problem.

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.