• 제목/요약/키워드: cylindrical structures

검색결과 510건 처리시간 0.022초

Free vibration analysis of a sandwich cylindrical shell with an FG core based on the CUF

  • Foroutan, Kamran;Ahmadi, Habib;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.121-133
    • /
    • 2022
  • An analytical approach for the free vibration behavior of a sandwich cylindrical shell with a functionally graded (FG) core is presented. It is considered that the FG distribution is in the direction of thickness. The material properties are temperature-dependent. The sandwich cylindrical shell with a FG core is considered with two cases. In the first model, i.e., Ceramic-FGM-Metal (CFM), the interior layer of the cylindrical shell is rich metal while the exterior layer is rich ceramic and the FG material is located between two layers and for the second model i.e., Metal-FGM-Ceramic (MFC), the material distribution is in reverse order. This study develops Carrera's Unified Formulation (CUF) to analyze sandwich cylindrical shell with an FG core for the first time. Considering the Principle of Virtual Displacements (PVDs) according to the CUF, the dependent boundary conditions and governing equations are obtained. The coupled governing equations are derived using Galerkin's method. In order to validate the present results, comparisons are made with the available solutions in the previous researches. The effects of different geometrical and material parameters on the free vibration behavior of a sandwich cylindrical shell with an FG core are examined.

Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection

  • Yi-Wen Zhang;Gui-Lin She;Lei-Lei Gan;Yin-Ping Li
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.615-625
    • /
    • 2023
  • Initial geometrical imperfection is an important factor affecting the structural characteristics of plate and shell structures. Studying the effect of geometrical imperfection on the structural characteristics of cylindrical shell is beneficial to explore the thermal post-buckling response characteristics of cylindrical shell. Therefore, we devote to investigating the thermal post-buckling behavior of graphene platelets reinforced mental foam (GPLRMF) cylindrical shells with geometrical imperfection. The properties of GPLRMF material with considering three types of graphene platelets (GPLs) distribution patterns are introduced firstly. Subsequently, based on Donnell nonlinear shell theory, the governing equations of cylindrical shell are derived according to Eulerian-Lagrange equations. Taking into account two different boundary conditions namely simply supported (S-S) and clamped supported (C-S), the Galerkin principle is used to solve the governing equations. Finally, the impact of initial geometrical imperfections, the GPLs distribution types, the porosity distribution types, the porosity coefficient as well as the GPLs mass fraction on the thermal post-buckling response of the cylindrical shells are analyzed.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

등분포 하중 작용시 적층각 변화에 따른 원통형 적층구조물의 좌굴 (Buckling of Laminated Cylindrical Composite Structures Subjected to Ply Angle Change Under External Uniform Pressure)

  • 나태수;염응준;한택희;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.349-355
    • /
    • 2004
  • The material such as steel or concrete has used to civil structures such as drainage pipes , but many problems such as corrosion in using steel and concrete pipes have happened. So, Necessity of developing new materials with high strength and anti-corrosion has been topic recently. One of this topics is study about ERP pipe. The strength of orthotropic FRP tends to be higher than it of isotropic FRP, the buckling problems can be significant in materials with high strength. thus, the study about bucking of orthotropic FRP-pipe is needed. In this study, buckling analysis of laminated cylindrical composite structures subjected In ply angle change under external uniform pressure was performed.

  • PDF

탄소나노튜브 속에 성장된 구리 나노와이어의 구조 (Structures of Ultrathin Copper Nanowires Encapsulated in Carbon Nanotubes)

  • 최원영;강정원;송기오;황호정
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.294-299
    • /
    • 2003
  • We have investigated the structures of copper nanowires encapsulated in carbon nanotubes using a structural optimization process applied to the steepest descent method. The results showed that the stable morphology of the cylindrical ultrathin copper nanowires in carbon nanotubes is multishell packs consisted of coaxial cylindrical shells. As the diameter of copper nanotubes increased, the encapsulated copper nanowires have the face centered cubic structure as the bulk. Both the semiclassical orbits in a circle and the circular rolling of a triangular network can explain the structures of ultrathin multishell copper nanowires encapsulated in carbon nanotubes.

  • PDF

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan;Tong Zhang;Ting Zheng;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.459-474
    • /
    • 2024
  • Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.

원통형 액체저장 강탱크의 내진설계기준 (Earthquake Resistant Design Critieria for Cylindrical Liquid-Storage Steel tanks)

  • 국승규;이진호
    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.19-28
    • /
    • 1999
  • 건물과 교량의 내진설계기준 제정작업이 활발하게 진행되고 있는 반면 탱크구조물에 대한 내진설계기준 제정작업은 아직 초기단계에 머무르고 있는 실정이다 탱크구조물이 지진에 의해 붕괴되는 경우 탱크자체의 파손 및 저장물의 손실에 의한 직접피해보다 저장물의 유출에 의한 피해파급이 더욱 심각한 상황을 초래할 수 있다 따라서 탱크구조물의 내진설계기준에는 탱크구조물의 동적 거동에 대한 해석 및 검토방법은 물론 이러한 피해파급을 최소할 수 잇는 조치가 포함되어야 한다 이논문에서는 원통형 액체저장 강탱크에 대한 내진설계기준의 제정에 필수적으로 고려해야 하는 설계개념과 원칙 해석방법 검토사항 및 피해파급 차단초치를 제시하였다.

  • PDF

Buckling of axially compressed composite cylinders with geometric imperfections

  • Taheri-Behrooz, Fathollah;Omidi, Milad
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.557-567
    • /
    • 2018
  • Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection (SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than large D/R ratios.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.