• Title/Summary/Keyword: cylindrical panel

Search Result 74, Processing Time 0.02 seconds

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

Optimal Design of Stiffened Laminated Composite Cylindrical Panel with Various Types of Stiffeners (다양한 형태의 보강재로 보강된 원통형패널의 최적설계)

  • Lee Jong-Sun;Won Chong-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • The optimal design for stiffened laminated composite cylindrical panels under axial compression was studied using linear and nonlinear deformation theories by finite difference energy methods. Various panel structures was made from Carbon/Epoxy USN125 prepreg and considered 3 types stiffeners. Optimal design analyses of panel structure are carried out by the nonlinear search optimizer, ADS. This optimal design results are compared to the FEM result using ANSYS.

Optimal Design of Stiffened Laminate Composite Cylindrical Shells (보강복합재료원통셸의 최적설계)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.12-18
    • /
    • 1998
  • The optimal design for stiffened laminate composite cylindrical shells under combined loads is studied by a nonlinear mathematical search algorithm. The optimal design is accomplished with the CONMIN. several types of buckling modes with maximum allowable stresses and strains are included as constraints in the optimal design process, such as general buckling, panel buckling with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments. Rectangular or T type stringers and rectangular rings are used for stiffened laminate composite cylindrical shells.

  • PDF

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

A Study on the Minimum Weight Design of Stiffened Cylindrical Shells (보강원통셸의 최소중량화설계 연구)

  • 원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.630-648
    • /
    • 1992
  • The minimum weight design for simply-supported isotropic or symmetrically laminated stiffened cylindrical shells subjected to various loads (axial compression or combined loads) is studied by a nonlinear mathematical search algorithm. The minimum weight design in accomplished with the CONMIN optimizer by Vanderplaats. Several types of buckling modes with maximum allowable stresses and strains are included as constraints in the minimum weight design process, such as general buckling, panel buckling with either stingers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel and local skin buckling including stiffener rolling. The approach allows the consideration of various shapes of stiffening members. Rectangular, I, or T type stringers and rectangular rings are used for stiffened cylindrical shells. Several design examples are analyzed and compared with those in the previous literatures. The unstiffened glass/epoxy, graphite/epoxy(T300/5208), and graphite/epoxy aluminum honeycomb cylindrical shells and stiffened graphite/epoxy cyindrical shells under axial compression are analyzed through the present approach.

Buckling Behavior of Stiffened Laminated Composite Laminated Composite Cylindrical Panel (보강된 복합적층 원통형패널의 좌굴거동)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.549-554
    • /
    • 2000
  • In this study, using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods, respectively, various buckling load factors are obtained for stiffened laminated composite cylindrical panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression, and then for them, buckling behavior design analyses are carried out by the nonlinear search optimizer, ADS

  • PDF

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

Parametric Instability of Cylinderical Panels (주기적(週基的)인 압축하중을 받는 원통(円筒) Panel의 동적(動的) 불안정(不安定) 특성(特性)에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.737-748
    • /
    • 2000
  • This paper presents a numerical analysis procedure and a characteristics for dynamic of cylindrical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and dynamic for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically by the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or an eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling, and some typical mode shapes of vibration and buckling are also presented.

  • PDF

Dynamic Characteristics of Cylindrical Composite Panels With Surface Damping Treatments Using Full Layerwise Theory (완전층별변위이론에 근거한 표면감쇠처리된 원통형 복합적층 패널의 동적특성)

  • Seong, Tae-Hong;Lee, In;Oh, Il-Kwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.29-32
    • /
    • 2005
  • Based on the full layerwise displacement shell theory, vibration and damping characteristics of cylindrical sandwich panels are investigated. The transverse shear deformation and the normal strain are fully taken into account for structural damping modelling. Modal damping factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich beams. Present results shows that full layerwise theory can accurately predict vibration and damping characteristics of cylindrical composite panels with surface damping treatments and constrained layer damping. The viscoelastic materials depending on elevated temperature environment and exciting frequencies can be fully considered.

  • PDF

Elasticity solution of multi-layered shallow cylindrical panels subjected to dynamic loading

  • Shakeri, M.;Eslami, M.R.;Alibiglu, A.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.195-208
    • /
    • 2002
  • Elasticity solutions to the boundary-value problems of dynamic response under transverse asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supported along all four sides and has finite length. The highly coupled partial differential equations are reduced to ordinary differential equations with constant coefficients by means of trigonometric function expansion in the circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin finite element method. Numerical examples are presented for two (0/90 deg.) and three (0/90/0 deg.) laminations under dynamic loading.