• Title/Summary/Keyword: cyclohexanone

Search Result 98, Processing Time 0.028 seconds

Synthesis and Characterization of Stereospecific 1-Propargyl-2-(dimethoxymethyl)-1- cyclohexanols

  • Lin, Juwhan;Kim, Sang-Il;Lee, Seung-Yong;Kim, Yong-Hyun;Lee, Kee-Young;Oh, Chang-Young;Ham, Won-Hun
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.104-111
    • /
    • 2000
  • Stereochemical isomers with hydroxy groups were synthesized by reacting 2-(dimethoxy-methyl)cyclohexanone with propargylmagnesium bromide. The stereo chemical structures were identified by NMR spectral interpretation and the geometry optimization. To assist the NMR interpretation, geometry optimization based on semi-empirical AM1 and PM3 methods was applied. Throughout this study, the structures of the two isomers were all determined and $^{1}H$ and $^{13}C$ NMR spectra were fully assigned. It was proven that the less polar isomer is an axial alcohol and the more polar one is an equatorial alcohol.

  • PDF

Reactivity of Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) Cation (Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) 양이온의 반응성)

  • Jin, Myung Jong;Choi, Heung Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.71-75
    • /
    • 1995
  • Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) hexafluorophosphate cation was prepared by the protonation of tricarbonyl(4-methyl-5-hexadien-1-ol)iron wit hexafluorophosphoric acid. Reaction of the cation with water, dimethyl cuprate, diphenylacetylenyl cuprate, and enolate of cyclohexanone gave the corresponding (η4-1,3-diene)Fe(CO)3. The regioselectivity for the nucleophilic attack appears to the predominantly the result of steric effect.

  • PDF

Synthesis and Biological Activity of Conformationally Controlled 2-PAM Derivatives

  • Jahng, Yurng-Dong;Park, Jae-Gyu;Yoo, Jung-Whey;Kim, Sun-Young;Kim, Tae-An;Yang, Jae-Ho
    • Archives of Pharmacal Research
    • /
    • v.23 no.3
    • /
    • pp.222-225
    • /
    • 2000
  • A series of conformationally controlled 2-PAM derivatives were prepared from 2-acetylpyridine and 2,3-pyrido[b]cycloalkenones in two steps and their reactivities towards parathion poisoned AChE were evaluated. The most planar 2,3-pyrido[b]cyclohexanone oxime methiodide showed an activity comparable to 2-PAM Implying E-syn is that the most active comformation of 2-PAM in the biological system.

  • PDF

Fermi Resonance and Solvent Dependence of the νC=O Frequency shifts of Raman Spectra: Cyclohecanone and 2-Cyclohexen-1-one

  • Nam, Sang Il;Min, Eun Seon;Jeong, Yeong Mi;Lee, Mu Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.989-993
    • /
    • 2001
  • The carbonyl stretching vibration, νC=O of 2-cyclohexene-1-one, is in Fermi resonance with a combination tone. The amount of Fermi resonance interaction between these two modes is dependent upon the amount of solute/solvent interaction due to hyd rogen bonding between the carbonyl oxygen and the solvent proton. The corrected νC=O frequency of 2-cyclohexene-1-one occurs at a lower frequency than the observed νC=O mode of cyclohexanone, possibly caused by expanded conjugation effects. The carbonyl stretching modes of cyclic ketones were also affected by interaction with the ROH/CCl4 mixed solvent system.

Studies on the Semicarbazone Formation of Aliphatic and Alicyclic Ketones. (Aliphatic Ketone과 Alicyclic Ketone의 Semicarbazone 생성반응에 관한 연구)

  • Lim, Nag-Bin;Oh, Yang-Hwan;Kim, Yong-In
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.59-67
    • /
    • 1991
  • The reactions of semicarbazide hydrochloride with aliphatic and alicyclic ketones were studied kinetically at 15, 25, 35 and 45$^{\circ}C$ in 20% ethanol solution buffered at pH 2.9. The rate of cyclohexanone semicarbazone formation is 5.5 times as fast as that of cyclopentanone semicarbazone, while 3-pentanone semicarbazone is 4.7 times as slow as that of 2-pentanone, The activation energy of cyclohexanone, 2-pentanone, 2 hexanone, cyclopentanone, 4-methyl-2-pentanone and 3-pentanone semicarbazone formation are calculated 5.08, 7.52, 8.79, 9.59, 9.49, 11.59, respectively. It is concluded from the effect of ionic strength that the reaction is affected by not ion but neutral molecules being progressed hydrogen bond between oxygen atom of carbonyl group and hydrogen atom of acid-catalyst and concerted nucleophilic attack of free base on the carbonly compound. Dependence on pH of the rate of 2-pentanone semicarbozone formation is linear relationship below pH 4.60 and above pH 5.60. As a result of studing citric acid catalysis, second order constants increase linearly with citric acid concentration. As the catalyst concentration is varied from 0.025 to 0.10 mol/1 at pH 2.90, the rate constants increase 1.4 times, but slight increase is observed at pH 5.60. Conclusively, the rate-determining step is formation of tetrahedral interemediate below pH 4.65 and dehydration between pH 5.60 and pH 7.11. It is concluded that the formation reaction of cyclohexanone semicarbazone is faster than cyclopentanone semicarbazone due to the steric strain in the process of forming tetrahedral intermediate.

Effect of Cyclohexane Treatment on the Liver Damage in CCl4-Pretreated Rats (CCl4전처치한 흰쥐에 Cyclohexane 투여가 간손상에 미치는 영향)

  • 윤종국;김현희
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2003
  • TO evaluate an effect of cyclohexane treatment on the degree of liver damage, rats were induced liver damage with 10 or 17 times $CCl_4$ injection (0.1 m1/100 g body wt., 50% $CCl_4$ dis-solved in olive oil) at intervals of every other day. Cyclohexane (1.56 g/kg body wt., i.p.) was administrated to the animals at 48 hours after the last pretreatment of $CCl_4$ . Rats were sacrificed at 4 hours after injection of cyclohexane. On the basis of histopathological findings, liver weight/body weight (LW/ BW, %), activities of serum alanine aminotransferase (ALT), xanthine oxidase (XO) and akaline phosphatase (ALP), and contents of liver protein and manlondialdehyde (MDA), $CCl_4$ -pretreatment induced liver damage. And $CCl_4$ 17 times treated group showed more severe liver damage than $CCl_4$ 10 times treated group. Administration of one dose of cyclohexane to $CCl_4$ 10 times treated animals resulted in the enhanced liver damage; liver necrosis with proliferation of fibroblast and bile duct abnormality, and increase in hepatic MDA content and the activities of serum ALP and ALT, But the enhanced liver damage was not found in $CCl_4$ 17 times treated animals. Serum cyclohexanone concentrations at 4 or 8 hours after injection of cyclohexane were higher in all liver damaged groups than normal group and were somewhat higher In $CCl_4$ 17 times treated animals than $CCl_4$ 10 times treated ones. Among the oxygen free radical metabolizing enzymes, hepatic cytochrome P45O dependent aniline hydroxylase (CYPdAH) activity in cyclohexane metabolizing enzyme system was meaningfully increased by the injection of cyclohexane to the liver damaged rats, with increased Vmax and high affinity to aniline. LW/BW (%) and activities of serum XO and ALT were more significantly increased in liver damaged groups than normal group by administration of cyclohexanone. In conclusion, it is assumed that an enhancement of liver damage by injection of one dose of cyclohexane to liver damaged animals might be caused by oxygen free radicals and cyclohexanone.

Effect of Cyclohexanone Treatment on the Serum Levels of Glutathione S-Transferase Activities in Acute Liver Damaged Rats

  • Park, Hye-Jung;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.191-196
    • /
    • 2001
  • To evaluate an effect of cyclohexanone (CHO) treatment on the serum levels of glutathione S-transferase (GST) activity in acute liver damaged animals, acute liver damage was induced in rats with pretreatment of 50% $CCl_4$ in olive oil (0.1 ml/100 g body wt) intraperitoneally 14 times every other day. To liver damaged rats, CHO (1.56 g/kg body wt, i. p.) was injected once and then rats were sacrificed at 4 hours after injection of CHO. Increasing rate of GST activity to the control in serum was higher in CHO-treated rats pretreated with CCL$_4$ than the $CCl_4$-pretreated those. All the more, the injection of CHO to the liver damaged rats led to more enhanced liver damage on the basis of liver functional findings, i. e., serum levels of alanine aminotransferase (ALT) activity, liver weight per body weight, and malondialdehyde content. The changing pattern of serum ALT activity was similar with that of GST activity, whereas that of liver in both enzymes differed more or less from each other; the liver GST activity in CHO-treated rats pretreated with $CCl_4$ being more increased tendency than that of $CCl_4$-pretreated rats. Concomitantly the injection of CHO showed a increasing tendency of liver GST activity compared with the control. Furthermore, CHO injection to the liver damaged rats showed somewhat higher Vmax in the kinetics of liver GST enzymes. In conclusion, injection of CHO to the liver damaged animals led to more increased activity of serum GST, and it may be chiefly caused by the alteration of membrane permeability.

  • PDF

Stability of $4-Chloro-{\alpha}-(4-chlorophenyl)-{\alpha}-(trichloromethyl)$ Benzyl Alcohol(Dicofol) in Various Organic Solvents ($4-Chloro-{\alpha}-(4-chlorophenyl)-{\alpha}-(trichloromethyl)$ Benzyl Alcohol(Dicofol)의 각종유기용매중(各種有機溶媒中)에서의 안정성(安定性))

  • Shin, Hyeon-Hwa;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.177-181
    • /
    • 1982
  • This experiment was carried out to investigate the stability of Dicofol solutions which were prepared with various organic solvents such as xylene, toluene, methylisobutyl ketone (M.I.B.K.), cyclohexanone, N.N.-dimetyl formamide (N.N.-D.M.F.) and isophorone under different temperature and storage period. The decomposition rate of Dicofol was increased in the order of cyclohexanone> N.N.-D.M.F.>W.P.>toluene, xylene, M.I.B.K. and isophorone. However, it was shown that precipitation was found in Dicofol solutions such as xylene, toluene and M.I..B.K. except isophorone. Therefore, isophorone was recognized as the best of organic solvents tested for Dicofol in the case of emulsifiable concentrate formulation with it.

  • PDF

Highly Ordered Mesoporous Metal Oxides as Catalysts for Dehydrogenation of Cyclohexanol (메조기공을 갖는 다양한 금속 산화물 촉매를 이용한 사이클로헥사놀의 탈수소화 반응)

  • Lee, Eunok;Jin, Mingshi;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.518-522
    • /
    • 2013
  • Cyclohexanone is important intermediate for the manufacture of caprolactam which is monomer of nylron. Cyclohexanone is generally produced by dehydrogenation reaction of cyclohexanol. In this study, highly mesoporous metal oxides such as meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$ and meso-NiO were synthesized using mesoporous silica KIT-6 as a hard template via nano-replication method for dehydrogenation of cyclohexanol. The overall conversion of cyclohexanol followed a general order: meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO. In particular, meso-$WO_3$ significantly showed higher activity than the other mesoporous metal oxides. Therefore, the meso-$WO_3$ has wide range of application possibilities for dehydrogenation of cyclohexanol.