• Title/Summary/Keyword: cycling performance

Search Result 342, Processing Time 0.023 seconds

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha;Jinhee Lee;Yong-Tae Kim;Jinsub Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.365-382
    • /
    • 2023
  • A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.

Improving the TCP Retransmission Timer Adjustment Mechanism for Constrained IoT Networks

  • Chansook Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2024
  • TCP is considered as one of the major candidate transport protocols even for constrained IoT networks..In our previous work, we investigated the congestion control mechanism of the uIP TCP. Since the uIP TCP sets the window size to one segment by default, managing the retransmission timer is the primary approach to congestion control. However, the original uIP TCP sets the retransmission timer based on the fixed RTO, it performs poorly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe. In our previous work, we proposed a TCP retransmission timer adjustment scheme for uIP TCP which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. Although our previous work showed that the proposed retransmission timer adjustment scheme can improve performance, we observe that the scheme often causes a node to set the retransmission timer for an excessively too long time period. In this work, we show that slightly modifying the dithering mechanism of the previous scheme is effective for improving TCP fairness.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong;Yeon, Jin-Tak;Hong, Kijoo;Lee, Sang-Ick;Choi, Nam-Soon;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2029-2035
    • /
    • 2013
  • The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method (전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성)

  • Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).

Electrochemical Characteristics of Carbon-coated LiFePO4 as a Cathode Material for Lithium Ion Secondary Batteries

  • Shin, Ho-Chul;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.168-171
    • /
    • 2005
  • The electrochemical properties of $LiFePO_4$ as a cathode for Li-ion batteries were improved by incorporating conductive carbon into the $LiFePO_4$. X-ray diffraction analysis and SEM observations revealed that the carbon-coated $LiFePO_4$ consisted of fine single crystalline particles, which were smaller than the bare $LiFePO_4$. The electrochemical performance of the carbon-coated $LiFePO_4$ was tested under various conditions. The carbon-coated $LiFePO_4$ showed much better performance in terms of the discharge capacity and cycling stability than the bare $LiFePO_4$. The improved electrochemical performances were found to be attributed to the reduced particle size and enhanced electrical conductivity of the $LiFePO_4$ by the carbon.

Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery (리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극)

  • Jung, Hye-Ran;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.

Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries

  • Wang, Wan Lin;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.338-343
    • /
    • 2014
  • A $Fe_3O_4$-graphite nanofiber composite for use as an anode material was successfully synthesized by calcining $Fe_3O_4$ and graphite nanofiber (GNF) together in a $N_2$ atmosphere. Using this $Fe_3O_4$-GNF composite in a lithium ion battery resulted in a higher lithium storage capacity than that obtained using $Fe_3O_4$-graphite ($Fe_3O_4$-G). The $Fe_3O_4$-GNF (10 wt%) electrode exhibited a higher lithium ion diffusion coefficient ($2.29{\times}10^{-9}cm^2s^{-1}$) than did the $Fe_3O_4$-G (10%) ($3.17{\times}10^{-10}cm^2s^{-1}$). At a current density of $100mA\;g^{-1}$, the $Fe_3O_4$-GNF (10 wt%) anode showed a higher reversible capacity ($1,031mAh\;g^{-1}$) than did the $Fe_3O_4$-G (10%) anode ($799mAh\;g^{-1}$). Moreover, the $Fe_3O_4GNF$ electrodes showed good cycling performance without the addition of a conductive material.

Failure analysis of steel column-RC base connections under lateral cyclic loading

  • Demir, Serhat;Husem, Metin;Pul, Selim
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2014
  • One of the most important structural components of steel structures is the column-base connections which are obliged to transfer horizontal and vertical loads safely to the reinforced concrete (RC) or concrete base. The column-base connections of steel or composite steel structures can be organized both moment resistant and non-moment resistant leading to different connection styles. Some of these connection styles are ordinary bolded systems, socket systems and embedded systems. The structures are frequently exposed to cycling lateral loading effects causing fatal damages on connections like columns-to-beams or columns-to-base. In this paper, connection of steel column with RC base was investigated analytically and experimentally. In the experiments, bolded connections, socket and embedded connection systems are taken into consideration by applying cyclic lateral loads. Performance curves for each connection were obtained according to experimental and analytical studies conducted and inelastic behavior of connections was evaluated accordingly. The cyclic lateral performance of the connection style of embedding the steel column into the reinforced concrete base and strengthening of steel column in upper level of base connection was found to be higher and effective than other connection systems. Also, all relevant test results were discussed.

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.