Browse > Article
http://dx.doi.org/10.14478/ace.2016.1062

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method  

Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.4, 2016 , pp. 421-426 More about this Journal
Abstract
In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).
Keywords
polyoxometalate; polypyrrole; pseudocapacitor; nanocomposite; electrochemical performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Zhou, Y. Zhang, Y. Li, and J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett., 13, 2078-2085 (2013).   DOI
2 T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, and Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett., 14, 2522-2527 (2014).   DOI
3 L Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wnag, and M. Liu, Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors, Nano Lett., 12, 321-325 (2012).   DOI
4 M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of $MnO_2$@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015).   DOI
5 X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Gran, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011).   DOI
6 S. Zhang, and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2015).   DOI
7 K. Naoi, S. Ishimoto, J.-I. Miyamoto, and W. Naoi, Second generation 'nanohybrid supercapacitor': evoluation of capacitive energy storage devices, Energy Environ. Sci., 5, 9363-9373 (2012).   DOI
8 C.-C. Hu, K.-H. Chang, M.-C. Lin, and Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous $RuO_2$ for next generation supercapacitors. Nano Lett., 6, 2690-2695 (2006).   DOI
9 M. M. P. Madrigal, F. Estrany, E. Armelin, D. D. Diaz, and C. Aleman, Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels, J. Mater. Chem. A, 4, 1792-1805 (2016).   DOI
10 J. Cherusseri and K. K. Kar, Polypyrrole-decorated 2D carbon nanosheet electrodes for supercapacitors with high areal capacitance, RSC Adv., 6, 60454-60466 (2016).   DOI
11 K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401 (2010).   DOI
12 S. Cho, K.-H. Shin, and J. Jang, Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films, ACS Appl. Mater. Interfaces, 5, 9186-9193 (2013).   DOI
13 T. G. Yun, B. I. Hwang, D. Kim, S. Hyun, and S. M. Han, Polypyrrole-$MnO_2$-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Interfaces, 7, 9228-9234 (2015).   DOI
14 C. Bora, J. Sharma, and S. Dolui, Polypyrrole/sulfnoated graphene composite as electrode material for supercapacitor, J. Phys. Chem. C, 118, 29688-29694 (2014).   DOI
15 S. Chen and I. Zhitomirsky, Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors, J. Power Sources, 243, 865-871 (2013).   DOI
16 S. Biswas and L. T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes, Chem. Mater., 22, 5667-5671 (2010).   DOI
17 F. F. D. Belanger, Electropolymerization of polypyrrole and polyaniline-polypyrrole from organic acidic medium, J. Phys. Chem. B, 103, 9044-9054 (1999).   DOI
18 D. Y. Liu and J. R. Reynolds, Dioxythiophene-based polymer electrodes for supercapacitor modules, ACS Appl. Mater. Interfaces, 2, 3586-3593 (2010).   DOI
19 K. Shi and I. Zhitomirsky, Influence of current collector on capacitive behavior and cycling stability of tiron doped polypyrrole electrodes, J. Power Sources, 240, 42-49 (2013).   DOI
20 M. Yang, B. G. Choi, S. C. Jung, Y.-K. Han, Y. S. Huh, and S. B. Lee, Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors, Adv. Funct. Mater., 24, 7301-7309 (2014).   DOI
21 M. Yang, D. S. Kim, J. H. Yoon, S. B. Hong, S. W. Jeong, D. E. Yoo, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide, Analyst, 141, 1319-1324 (2016).   DOI
22 J. Hu, Y. Ji, W. Chen, C. Streb, and Y.-F. Song, "Wiring" redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy, Energy Environ. Sci., 9, 1095-1101 (2016).   DOI
23 Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors, J. Phys. Chem. C, 115, 23584-23590 (2011).   DOI
24 A. K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, and P. Gomez-Romero, Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors, Adv. Funct. Mater., 15, 1125-1133 (2005).   DOI
25 G. M. Suppes, B. A. Deore, and M. S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications, Langmuir, 24, 1064-1069 (2008).   DOI
26 N. Anwar, M. Vagin, F. Laffir, G. Armstrong, C. Dickinson, and T. McCormac, Transition metal ion-substituted polyoxometalates entrapped in polypyrrole as an electrochemical sensor for hydrogen peroxide, Analyst, 137, 624-630 (2012).   DOI
27 H. Wang and X. Wang, Growing nickel cobaltite nanowires and nanosheets on carbon cloth with different pseudocapacitive performance, ACS Appl. Mater. Interfaces, 5, 6255-6260 (2013).   DOI
28 G. Bajwa, M. Genovese, and K. Lian, Multilayer polyoxometalates-carbon nanotube composites for electrochemical capacitors, ECS J. Solid State Sci. Technol., 2, M3046-M3050 (2013).   DOI