• Title/Summary/Keyword: cyclic peptides

Search Result 23, Processing Time 0.023 seconds

Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Joo, Sang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • There are many cyclic peptides with diverse biological activities, such as antibacterial activity, immunosuppressive activity, and anti-tumor activity, and so on. Encouraged by natural cyclic peptides with biological activity, efforts have been made to develop cyclic peptides with both genetic and synthetic methods. The genetic methods include phage display, intein-based cyclic peptides, and mRNA display. The synthetic methods involve individual synthesis, parallel synthesis, as well as split-and-pool synthesis. Recent development of cyclic peptide library based on split-and-pool synthesis allows on-bead screening, in-solution screening, and microarray screening of cyclic peptides for biological activity. Cyclic peptides will be useful as receptor agonist/antagonist, RNA binding molecule, enzyme inhibitor and so on, and more cyclic peptides will emerge as therapeutic agents and biochemical tools.

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Choi, Joon-Seok;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.

Antimicrobial Cyclic Peptides for Plant Disease Control

  • Lee, Dong Wan;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

Conformational Study of Cyclic Ac-Cys-Pro-Xaa-Cys-NHMe Peptides: a Model for Chain Reversal and Active Site of Disulfide Oxidoreductase

  • Park, Hae-Sook;Kim, Choon-mi;Kee, Kang-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.330.2-330.2
    • /
    • 2002
  • The conformational study on cyclic Ac-Cys-Pro-Xaa-Cys-NHMe (Ac-CPXC-NHMe: X = Ala, Val. Leu. Aib. Gly. His. Phe, Tyr. Asn. and Ser) peptides has been carried out using the ECEPP/3 force field and the hydration shell model in the unhydrated and hydrated states. This work has been undertaken to investigate structural implications of the CPXC sequence as the chain reversal for the initiation of protein folding and as the motif for active site of disulfide oxidoreductases. The backbone conformation DAAA is in common the most feasible for cyclic CPXC peptides in the hydrated state. which has a type 1${\beta}$-turn at the Pro-Xaa sequence. The proline residue and the hydrogen bond between backbones of two cystines appear to play a role in stabilizing this preferred conformation of cycilc CPXC peptides. However. the distributions of backbone conformations and ${\beta}$-turns may indicate that the cyclic CPXC peptide seems to exist as an ensemble of ${\beta}$-turns and coiled conformations. The intirnsic stability of the cyclic CPXC motif itself the active conformation appears to play a role in determining electrochemical properties of disulfide oxidoreductases.

  • PDF

Structure and Function of RGD Peptides Derived from Disintegrin Proteins

  • Kim, Jiun;Hong, Sung-Yu;Park, Hye-seo;Kim, Doo-Sik;Lee, Weontae
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.205-211
    • /
    • 2005
  • The Arg-Gly-Asp (RGD) sequence serves as the primary recognition site in extracellular matrix proteins, and peptides containing this sequence can mimic the biological activities of matrix proteins. We have initiated structure-function studies of two RGD containing peptides, RGD-5(AGGDD) and cyclic RGD-6(CARGDDC). Assays have shown that cyclic RGD-peptides inhibit platelet aggregation more efficiently than linear ones. NMR data revealed that RGD-5 and RGD-6 have entirely different conformation. RGD-5 has a linear extended structure and RGD-6 has a stable loop conformation. In RGD-5 the guanidinium group of Arg2 and the carboxyl group of Asp4 lie in parallel, whereas the side-chains of Arg3 and Asp5 of RGD-6 are located in different planes, supporting the idea that the stability of the cyclic form derives from the packing of the side chain of the Arg and Asp residues. The structural features of these peptides could provide a basis for designing new drugs against diseases related to platelet aggregation and as cancer antagonists.

Structure-Function of the TNF Receptor-like Cysteine-rich Domain of Osteoprotegerin

  • Shin, Joon;Kim, Young-Mee;Li, Song-Zhe;Lim, Sung-Kil;Lee, Weontae
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.352-357
    • /
    • 2008
  • Osteoprotegerin (OPG) is a soluble decoy receptor that inhibits osteoclastogenesis and is closely associated with bone resorption processes. We have designed and determined the solution structures of potent OPG analogue peptides, derived from sequences of the cysteine-rich domain of OPG. The inhibitory effects of the peptides on osteoclastogenesis are dose-dependent ($10^{-6}M-10^{-4}M$), and the activity of the linear peptide at $10^{-4}M$ is ten-fold higher than that of the cyclic OPG peptide. Both linear and cyclic peptides have a ${\beta}$-turn-like conformation and the cyclic peptide has a rigid conformation, suggesting that structural flexibility is an important factor for receptor binding. Based on structural and biochemical information about RANKL and the OPG peptides, we suggest that complex formation between the peptide and RANKL is mediated by both hydrophobic and hydrogen bonding interactions. These results provide structural insights that should aid in the design of peptidyl-mimetic inhibitors for treating metabolic bone diseases caused by abnormal osteoclast recruitment.

Evaluation of intracellular uptake of cyclic RGD peptides in integrin αvβ3-expressing tumor cells

  • Soyoung Lee;Young-Hwa Kim;In Ho Song;Ji Young Choi;Hyewon Youn;Byung Chul Lee;Sang Eun Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • The cyclic Arg-Gly-Asp (cRGD) peptide is well-known as a binding molecule to the integrin αvβ3 receptor which is highly expressed on activated endothelial cells and new blood vessels in tumors. Although numerous results have been reported by the usage of cRGD peptide-based ligands for cancer diagnosis and therapy, the distinct mechanisms, and functions of cRGD-integrin binding to cancer cells are still being investigated. In this study, we evaluated the internalization efficacy of different types of cRGD peptides (monomer, dimer and tetramer form) in integrin αvβ3 overexpressing cancer cells. Western blot and flow cytometric analysis showed U87MG expresses highly integrin αvβ3, whereas CT-26 does not show integrin αvβ3 expression. Cytotoxicity assay indicated that all cRGD peptides (0-200 µM) had at least 70-80% of viability in U87MG cells. Fluorescence images showed cRGD dimer peptides have the highest cellular internalization compare to cRGD monomer and cRGD tetramer peptides. Additionally, transmission electron microscope results clearly visualized the endocytic internalization of integrin αvβ3 receptors and correlated with confocal microscopic results. These results support the rationale for the use of cRGD dimer peptides for imaging, diagnosis, or therapy of integrin αvβ3-rich glioblastoma.

Preliminary evaluation of new 68Ga-labeled cyclic RGD peptides by PET imaging

  • Shin, Un Chol;Jung, Ki-Hye;Lee, Ji Woong;Lee, Kyo Chul;Lee, Yong Jin;Park, Ji-Ae;Kim, Jung Young;Kang, Joo Hyun;An, Gwang Il;Ryu, Young Hoon;Choi, Jae Yong;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.118-122
    • /
    • 2016
  • Integrin ${\alpha}_v{\beta}_3$ plays an important role in the tumor metastases and angiogenesis. Arginine-glycine-aspartate (RGD) peptide motif binds to the integrin ${\alpha}_v{\beta}_3$. General $^{68}Ga$-labeled cyclic RGD peptides was rapidly eliminated from the circulatory system by renal excretion because of its hydrophilic property. The purpose of this study was to develop a novel $^{68}Ga$-labeled cyclic RGD peptides, which could acquire enhanced PET tumor images with improved pharmacokinetics by adopting biphenyl group between chelator and RGD peptides. $^{68}Ga$-DOTA-2P-c(RGDyK) was demonstrated a 12% higher lipophilicity level than $^{68}Ga$-DOTA-c(RGDyK) as a reference compound. In the animal PET, $^{68}Ga$-DOTA-2P-c(RGDyK) represented relatively lower blood-clearance, and an increased signal to noise ratio compared to $^{68}Ga$-DOTA-c(RGDyK). From these perspective, $^{68}Ga$-DOTA-2P-c(RGDyK) could be a good candidate for in integrin ${\alpha}_v{\beta}_3$-expressed tumor imaging.

Effect of Pancreatic Polypeptide Family on Cardiovascular Muscle Contractility: 1. Interactions with cyclic nucleotide activators and $K^+$ channel openers in canine cerebral arteries (Pancreatic Polypeptide Family의 심혈관계 근육 수축성에 대한 약리학적 작용: I. 개의 뇌혈관에서 cyclic nucleotide활성제와 칼륨통로개방제와의 상호작용)

  • Kim, Won-Joon;Lee, Kwang-Youn;Ha, Jeoung-Hee;Kwon, Oh-Cheol
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.147-162
    • /
    • 1992
  • The objectives of the present experiments were to characterize the effects of the peptides belonging to the pancreatic polypeptide family on the contractility of cerebral arteries and to observe the interactions of these peptides with the cyclic nucleotide activators and the potassium channel openers. Dogs of either sex, $20{\sim}30\;Kg$ in weight, were sacrificed. Basilar and middle cerebral arteries from brain were isolated and prepared for myography in the PSS equilibrated with 95% $O_2$ and 5% $CO_2$ at $37^{\circ}C$. The endothelial cells of the spiral strips were removed by CHAPS solution (0.3% w/v, 15 seconds). 1. PP, PYY and NPY contracted the arterial strips concentration-dependently with a rank order of potency of PYY>NPY>PP. These peptides were 20 to 200 times more potent than norepinephrine, and only PYY showed a greater potency than 5-HT. 2. Cyclic nucleotide activators, forskolin (for cAMP) and sodium nitroprusside (for cGMP) reduced the basal tone and inhibited the PP-, PYY- and NPY- induced contractions by concentration-dependent manners. Forskolin was more potent in reducing basal tone than sodium nitroprusside. 3. Potassium channel openers, RP 49356, P 1060 and BRL 38227 reduced the basal tone concentration-dependently and tended to inhibit the PP-, PYY- and NPY- induced contractions. Notably, BRL 38227 with low concentration $(0.1\;{\mu}M)$ enhanced the contractions induced by those peptides while P 1060 inhibited the contractions concentration-dependently. 4. The combinations of the cyclic nucleotide activators and the potassium channel openers were slightly additive in reducing the basal tone. P 1060 and BRL 38227 enhanced the relaxant effect of sodium nitroprusside significantly. On the PYY-induced contration $(0.1\;{\mu}M)$, $K^+$ channel openers tended to inhibit the inhibitory actions of forskolin and sodium nitroprusside. P 1060 and BRL 38227 antagonized the inhibitory action of sodium nitroprusside significantly. The results of the present study may be summarized that in canine cerebral arteries, not only NPY but also PYY may play a role in a cerebrovascular spasm, and intracellular concentration of either cAMP or cGMP may be involved in the mechanism of vasoconstrictive actions of these peptides, which may be affected either positively or negatively by a $K^+$ channel opener.

  • PDF

Efficient Macrocyclization for Cyclicpeptide Using Solid-Phase Reaction

  • Kim, Joong-Hup;Hong, Il-Khee;Kim, Hyo-Jeong;Jeong, Hyeh-Jean;Choi, Moon-Jeong;Yoon, Chang-No;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.801-806
    • /
    • 2002
  • Cyclicpeptides are important targets in peptide synthesis because of their interesting biological properties. Constraining highly flexible linear peptides by cyclization is one of the mostly widely used approaches to define the bioactive conformation of peptides. Cyclic peptides often have increased receptor affinity and metabolic stability over their linear counterparts. We carried out virtual screening experiment via docking in order to understand the interaction between HLE-Human Leukocyte Elastase and ligand peptide and to identify the sequence that can be a target in various ligand peptides. We made cyclic peptides as a target base on Metlle-Phe sequence having affinity for ligand and receptor active site docking. There are three ways to cyclize certain sequences of amino acids such as Met-lie-Phe-Gly-Ile. First is head-to-tail cyclization method, linking between N-terminal and C-terminal. Second method utilizes amino acid side chain such as thiol functional group in Cys, making a thioether bond. The last one includes an application of resin-substituted amino acids in solid phase reaction. Among the three methods, solid phase reaction showed the greatest yield. Macrocyclization of Fmoc-Met-Ile-Phe-Gly-Ile-OBn after cleavage of Fmoc protection in solution phase was carried out to give macrocyclic compound 5 in about 7% yield. In the contrast with solution phase reaction, solid phase reaction for macrocyclization of Met-Ile-Phe-Gly-Ile-Asp-Tentagel in normal concentrated condition gave macrocyclic compound 7 in more than 35% yield.