Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.082

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools  

Choi, Joon-Seok (College of Pharmacy, Daegu Catholic University)
Joo, Sang Hoon (College of Pharmacy, Daegu Catholic University)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 18-24 More about this Journal
Abstract
Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.
Keywords
Cyclic peptides; Stapled peptides; Drug lead; Bicyclic peptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Joo, S. H. (2012) Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) 20, 19-26.   DOI
2 Koivunen, E., Arap, W., Valtanen, H., Rainisalo, A., Medina, O. P., Heikkila, P., Kantor, C., Gahmberg, C. G., Salo, T., Konttinen, Y. T., Sorsa, T., Ruoslahti, E. and Pasqualini, R. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768-774.   DOI
3 Kwon, Y. and Kodadek, T. (2007) Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol. 14, 671-677.   DOI
4 Baek, S., Kutchukian, P. S., Verdine, G. L., Huber, R., Holak, T. A., Lee, K. W. and Popowicz, G. M. (2012) Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134, 103-106.   DOI
5 Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T. and Taunton, J. (2015) Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. eLife 4, e10222.   DOI
6 Beer, A. J., Haubner, R., Goebel, M., Luderschmidt, S., Spilker, M. E., Wester, H. J., Weber, W. A. and Schwaiger, M. (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med. 46, 1333-1341.
7 Bertoldo, D., Khan, M. M., Dessen, P., Held, W., Huelsken, J. and Heinis, C. (2016) Phage selection of peptide macrocycles against beta-catenin to interfere with Wnt signaling. ChemMedChem 11, 834-839.   DOI
8 Cai, M., Stankova, M., Muthu, D., Mayorov, A., Yang, Z., Trivedi, D., Cabello, C. and Hruby, V. J. (2013) An unusual conformation of gamma-melanocyte-stimulating hormone analogues leads to a selective human melanocortin 1 receptor antagonist for targeting melanoma cells. Biochemistry 52, 752-764.   DOI
9 Chang, Y. S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K. H., Olson, K. A., Kesavan, K., Gangurde, P., Mukherjee, A., Baker, T., Darlak, K., Elkin, C., Filipovic, Z., Qureshi, F. Z., Cai, H., Berry, P., Feyfant, E., Shi, X. E., Horstick, J., Annis, D. A., Manning, A. M., Fotouhi, N., Nash, H., Vassilev, L. T. and Sawyer, T. K. (2013) Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 110, E3445-E3454.   DOI
10 Colgrave, M. L., Korsinczky, M. J., Clark, R. J., Foley, F. and Craik, D. J. (2010) Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94, 665-672.   DOI
11 Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D. and Ruoslahti, E. (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Aspcontaining synthetic peptides. J. Cell Biol. 106, 925-930.   DOI
12 Edman, P. (1959) Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28, 69-96.   DOI
13 El-Mowafi, S. A., Alumasa, J. N., Ades, S. E. and Keiler, K. C. (2014) Cell-based assay to identify inhibitors of the Hfq-sRNA regulatory pathway. Antimicrob. Agents Chemother. 58, 5500-5509.   DOI
14 Fairlie, D. P. and Dantas de Araujo, A. (2016) Review stapling peptides using cysteine crosslinking. Biopolymers 106, 843-852.   DOI
15 Heinis, C. (2011) Bicyclic peptide antagonists derived from genetically encoded combinatorial libraries. Chimia (Aarau) 65, 677-679.   DOI
16 Horton, D. A., Bourne, G. T. and Smythe, M. L. (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput. Aided Mol. Des. 16, 415-430.   DOI
17 Jagtap, P. K., Garg, D., Kapp, T. G., Will, C. L., Demmer, O., Luhrmann, R., Kessler, H. and Sattler, M. (2016) Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate pre-mRNA splicing. J. Med. Chem. 59, 10190-10197.   DOI
18 Lian, W., Jiang, B., Qian, Z. and Pei, D. (2014) Cell-permeable bicyclic peptide inhibitors against intracellular proteins. J. Am. Chem. Soc. 136, 9830-9833.   DOI
19 Lalonde, M. S., Lobritz, M. A., Ratcliff, A., Chamanian, M., Athanassiou, Z., Tyagi, M., Wong, J., Robinson, J. A., Karn, J., Varani, G. and Arts, E. J. (2011) Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog. 7, e1002038.   DOI
20 Lauber, T., Neudecker, P., Rosch, P. and Marx, U. C. (2003) Solution structure of human proguanylin: the role of a hormone prosequence. J. Biol. Chem. 278, 24118-24124.   DOI
21 Liu, S., Edwards, D. S., Ziegler, M. C., Harris, A. R., Hemingway, S. J. and Barrett, J. A. (2001) 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug. Chem. 12, 624-629.   DOI
22 Lim, S. P., Wang, Q. Y., Noble, C. G., Chen, Y. L., Dong, H., Zou, B., Yokokawa, F., Nilar, S., Smith, P., Beer, D., Lescar, J. and Shi, P. Y. (2013) Ten years of dengue drug discovery: progress and prospects. Antiviral Res. 100, 500-519.   DOI
23 Lin, K. H., Ali, A., Rusere, L., Soumana, D. I., Kurt Yilmaz, N. and Schiffer, C. A. (2017) Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol. 91, e00045-17.
24 Liu, Q., Pan, D., Cheng, C., Zhang, A., Ma, C., Wang, L., Zhang, D., Liu, H., Jiang, H., Wang, T., Xu, Y., Yang, R., Chen, F., Yang, M. and Zuo, C. (2015) Targeting of MMP2 activity in malignant tumors with a 68Ga-labeled gelatinase inhibitor cyclic peptide. Nucl. Med. Biol. 42, 939-944.   DOI
25 Liu, T., Liu, Y., Kao, H. Y. and Pei, D. (2010) Membrane permeable cyclic peptidyl inhibitors against human Peptidylprolyl Isomerase Pin1. J. Med. Chem. 53, 2494-2501.   DOI
26 Millward, S. W., Fiacco, S., Austin, R. J. and Roberts, R. W. (2007) Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem. Biol. 2, 625-634.   DOI
27 Male, A. L., Forafonov, F., Cuda, F., Zhang, G., Zheng, S., Oyston, P. C. F., Chen, P. R., Williamson, E. D. and Tavassoli, A. (2017) Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci. Rep. 7, 3104.   DOI
28 Manna, A. K., Kumar, A., Ray, U., Das, S., Basu, G. and Roy, S. (2013) A cyclic peptide mimic of an RNA recognition motif of human La protein is a potent inhibitor of hepatitis C virus. Antiviral Res. 97, 223-226.   DOI
29 Melemenidis, S., Jefferson, A., Ruparelia, N., Akhtar, A. M., Xie, J., Allen, D., Hamilton, A., Larkin, J. R., Perez-Balderas, F., Smart, S. C., Muschel, R. J., Chen, X., Sibson, N. R. and Choudhury, R. P. (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 5, 515-529.   DOI
30 Muppidi, A., Doi, K., Ramil, C. P., Wang, H. G. and Lin, Q. (2014) Synthesis of cell-permeable stapled BH3 peptide-based Mcl-1 inhibitors containing simple aryl and vinylaryl cross-linkers. Tetrahedron 70, 7740-7745.   DOI
31 Murugan, R. N., Park, J. E., Lim, D., Ahn, M., Cheong, C., Kwon, T., Nam, K. Y., Choi, S. H., Kim, B. Y., Yoon, D. Y., Yaffe, M. B., Yu, D. Y., Lee, K. S. and Bang, J. K. (2013) Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg. Med. Chem. 21, 2623-2634.   DOI
32 Naumann, T. A., Tavassoli, A. and Benkovic, S. J. (2008) Genetic selection of cyclic peptide Dam methyltransferase inhibitors. Chembiochem 9, 194-197.   DOI
33 Stupp, R., Hegi, M. E., Gorlia, T., Erridge, S. C., Perry, J., Hong, Y. K., Aldape, K. D., Lhermitte, B., Pietsch, T., Grujicic, D., Steinbach, J. P., Wick, W., Tarnawski, R., Nam, D. H., Hau, P., Weyerbrock, A., Taphoorn, M. J., Shen, C. C., Rao, N., Thurzo, L., Herrlinger, U., Gupta, T., Kortmann, R. D., Adamska, K., McBain, C., Brandes, A. A., Tonn, J. C., Schnell, O., Wiegel, T., Kim, C. Y., Nabors, L. B., Reardon, D. A., van den Bent, M. J., Hicking, C., Markivskyy, A., Picard, M. and Weller, M.; European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100-1108.   DOI
34 Nielsen, D. S., Shepherd, N. E., Xu, W., Lucke, A. J., Stoermer, M. J. and Fairlie, D. P. (2017) Orally absorbed cyclic peptides. Chem. Rev. 117, 8094-8128.   DOI
35 O’Neil, K. T., Hoess, R. H., Jackson, S. A., Ramachandran, N. S., Mousa, S. A. and DeGrado, W. F. (1992) Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins 14, 509-515.   DOI
36 Rezaeianpour, S., Bozorgi, A. H., Moghimi, A., Almasi, A., Balalaie, S., Ramezanpour, S., Nasoohi, S., Mazidi, S. M., Geramifar, P., Bitarafan-Rajabi, A. and Shahhosseini, S. (2017) Synthesis and biological evaluation of cyclic [99mTc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with [99mTc]-HYNIC-GPRPP. Mol. Imaging Biol. 19, 256-264.   DOI
37 Ross, N. C., Reilley, K. J., Murray, T. F., Aldrich, J. V. and McLaughlin, J. P. (2012) Novel opioid cyclic tetrapeptides: trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting kappa opioid receptor antagonism. Br. J. Pharmacol. 165, 1097-1108.   DOI
38 Saito, T., Hirai, H., Kim, Y. J., Kojima, Y., Matsunaga, Y., Nishida, H., Sakakibara, T., Suga, O., Sujaku, T. and Kojima, N. (2002) CJ-15,208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J. Antibiot. 55, 847-854.   DOI
39 Schlippe, Y. V., Hartman, M. C., Josephson, K. and Szostak, J. W. (2012) In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc. 134, 10469-10477.   DOI
40 Storgard, C. M., Stupack, D. G., Jonczyk, A., Goodman, S. L., Fox, R. I. and Cheresh, D. A. (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J. Clin. Invest. 103, 47-54.   DOI
41 Urech-Varenne, C., Radtke, F. and Heinis, C. (2015) Phage selection of bicyclic peptide ligands of the notch1 receptor. ChemMedChem 10, 1754-1761.   DOI
42 Takagi, Y., Matsui, K., Nobori, H., Maeda, H., Sato, A., Kurosu, T., Orba, Y., Sawa, H., Hattori, K., Higashino, K., Numata, Y. and Yoshida, Y. (2017) Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett. 27, 3586-3590.   DOI
43 Tambunan, U. S. and Alamudi, S. (2010) Designing cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach. Bioinformation 5, 250-254.   DOI
44 Trinh, T. B., Upadhyaya, P., Qian, Z. and Pei, D. (2016) Discovery of a direct ras inhibitor by screening a combinatorial library of cellpermeable bicyclic peptides. ACS Comb. Sci. 18, 75-85.   DOI
45 Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L. and Korsmeyer, S. J. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466-1470.   DOI
46 Yamaguchi, S., Ito, S., Kurogi-Hirayama, M. and Ohtsuki, S. (2017) Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J. Control. Release 262, 232-238.   DOI
47 Wang, W., Shao, R., Wu, Q., Ke, S., McMurray, J., Lang, F. F., Jr., Charnsangavej, C., Gelovani, J. G. and Li, C. (2009) Targeting gelatinases with a near-infrared fluorescent cyclic His-Try-Gly-Phe peptide. Mol. Imaging Biol. 11, 424-433.   DOI
48 Wells, J. A. and McClendon, C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001-1009.   DOI
49 Xu, S., Li, H., Shao, X., Fan, C., Ericksen, B., Liu, J., Chi, C. and Wang, C. (2012) Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem. 55, 6881-6887.   DOI
50 Yan, B., Qiu, F., Ren, L., Dai, H., Fang, W., Zhu, H. and Wang, F. (2015) 99mTc-3P-RGD2 molecular imaging targeting integrin alphavbeta3 in head and neck squamous cancer xenograft. J. Radioanal. Nucl. Chem. 304, 1171-1177.   DOI
51 Zhang, Y., Degen, D., Ho, M. X., Sineva, E., Ebright, K. Y., Ebright, Y. W., Mekler, V., Vahedian-Movahed, H., Feng, Y., Yin, R., Tuske, S., Irschik, H., Jansen, R., Maffioli, S., Donadio, S., Arnold, E. and Ebright, R. H. (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides. eLife 3, e02450.   DOI
52 Shan, L. (2004) Fluorescein-conjugated cyclic decapeptides, CGLIIQKNEC (CLT1) and CNAGESSKNC (CLT2). In Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).