• 제목/요약/키워드: cyclic peptide

검색결과 66건 처리시간 0.029초

Cyclic Peptide, Ro09-0198의 혈소판활성화에 대한 작용기전 (Mechanism of Platelet Activation Induced by Cyclic Peptide, Ro09-0198)

  • 정세영
    • 약학회지
    • /
    • 제35권1호
    • /
    • pp.11-14
    • /
    • 1991
  • Ro09-0198, a cyclic peptide isolated from culture filtrates of Streptoverticillium griseove-rticillatum, induced platelet aggregation and serotonin release simultaneously. LDH release was not observed. Addition of peptide to rat platelet, loaded with $Ca^{2+}$ chelator quin-2, caused immediate rise in cytosolic free $Ca^{2+}$. Liposomal membrane containing phosphatidylethanolamine was damaged by peptide and released $^{45}Ca$ dose dependently.

  • PDF

Synthesis of Cyclic Antifreeze Glycopeptide and Glycopeptoids and Their Ice Recrystallization Inhibition Activity

  • Ahn, Mija;Murugan, Ravichandran N.;Shin, Song Yub;Kim, Eunjung;Lee, Jun Hyuck;Kim, Hak Jun;Bang, Jeong Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3565-3570
    • /
    • 2012
  • Until now, few groups reported the antifreeze activity of cyclic glycopeptides; however, the tedious synthetic procedure is not amenable to study the intensive structure activity relationship. A series of N-linked cyclic glycopeptoids and glycopeptide have been prepared to evaluate antifreeze activity as a function of peptide backbone cyclization and methyl stereochemical effect on the rigid Thr position. This study has combined the cyclization protocol with solid phase peptide synthesis and obtained significant quantities of homogeneous cyclic glycopeptide and glycopeptoids. Analysis of antifreeze activity revealed that our cyclic peptide demonstrated RI activity while cyclic glycopeptoids showed no RI activity. These results suggest that the subtle changes in conformation and Thr orientation dramatically influence RI activity of N-linked glycopeptoids.

흰쥐 복강 비만세포에서 Dendroaspis natriuretic peptide에 의한 히스타민 유리 (HISTAMINE RELEASE INDUCED BY DENDROASPIS NATRIURETIC PEPTIDE FROM RAT PERITONEAL MAST CELLS)

  • 김재곤;허선;백병주
    • 대한소아치과학회지
    • /
    • 제28권1호
    • /
    • pp.72-81
    • /
    • 2001
  • Dendroaspis natriuretic peptide (DNP)는 최근에 green Mamba snake Dendroaspis angusticeps의 독(venom)에서 발견된 17개의 아미노산 disulfide링 구조를 포함하는 38개 아미노산 펩티드로 natriuretic peptide family와 그 구조가 비슷하다. Natriuretic peptide family는 사람과 흰쥐 비만세포로부터 히스타민을 유리시킨다고 알려져 있다. 그러나 DNP가 비만 세포로부터 히스타민을 유리 시키는 여부는 밝혀져 있지 않다. 본 연구는 DNP가 흰쥐 복강 비만세포로부터 히스타민을 유리시키는 여부와 함께 히스타민 유리기전을 구명하고자 실시되었다. 다양한 농도의 DNP를 흰쥐 복강 비만세포에 처리한 다음, 비만세포의 탈과립을 도립 광학현미경으로 관찰하였다. 히스타민 유리량은 방사효소법으로 측정하였고 세포내 칼슘 유입량과 cyclic GMP의 수준은 방사면역법으로 측정하였다. DNP는 흰쥐 복강 비만세포를 탈과립시켰고 농도가 증가함에 따라 비만세포로부터 히스타민 유리량이 증가되었다. 또한 DNP는 농도 증가에 비례하여 비만세포 안으로 세포밖의 칼슘을 유입시켰으며 세포안의 cyclic GMP의 수준을 증가시켰다. 이상의 결과로 미루어, DNP는 비만세포 안의 cyclic GMP와 칼슘의 농도를 증가시켜 비만세포로부터 히스타민을 유리시키는 것으로 생각된다.

  • PDF

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube

  • Choi, Kyu-Min;Kwon, Chan-Ho;Kim, Hong-Lae;Hwang, Hyon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.911-916
    • /
    • 2012
  • Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond

  • Lee, Soo-Jin;Yoon, Sung-Hwa;Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.802-807
    • /
    • 2011
  • Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.

Comparative study of linear and cyclic forms of apoptosis-targeting peptide

  • Ha, Yeong Su;Soni, Nisarg;Huynh, Phuong Tu;Lee, Byung-Heon;An, Gwang Il;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제2권2호
    • /
    • pp.96-102
    • /
    • 2016
  • Apoptosis, a genetically determined process of programmed cell death, is considered a vital component of various processes including normal cell turnover, animal development, and tissue homeostasis. It has a crucial role in many medical disorders and hence the development of non-invasive imaging tool is highly demanded. Recently, we have developed a peptide-based radioactive probe (ApoPep-1) for apoptosis detection. In that work the potential of probe for apoptosis detection was verified, however in vivo stability of radiolabeled peptide was not enough to monitor apoptosis for extended period. In current study, we prepared cyclic ApoPep-1 peptides to improve the stability of origianl linear ApoPep-1 and carried out direct comparison studies in vitro and in vivo. A targeting efficacy of newly synthesized cyclic ApoPep-1 peptide for apoptosis was confirmed in acute myocardial infarct model.

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Choi, Joon-Seok;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.18-24
    • /
    • 2020
  • Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.

Gamakamide-E, a Strongly Bitter Tasting Cyclic Peptide with a Hydantoin Structure from Cultured Oysters Crassostrea gigas

  • Lee, Jong-Soo;Satake, Masayuki;Horigome, Yoichi;Oshima, Yasukatsu;Yasumoto, Takeshi
    • Fisheries and Aquatic Sciences
    • /
    • 제15권1호
    • /
    • pp.15-19
    • /
    • 2012
  • A new cyclic peptide (six-membered amino acid), gamakamide-E (L-Leu-L-Met (SO)-L-Me-Phe-L-Leu-D-Lys-L-Phe), was isolated as a strongly bitter tasting compound from cultured oysters, Crassostrea gigas. The molecular formula of $C_{43}H_{61}N_7O_8S$ was deduced from high resolution fast atom bombardment mass spectrometry (HR FAB-MS) ($[M+H]^+$ m/z 836.4356 ${\Delta}$= -2.4 mmu). Its unique structure including a hydantoin structure was firstly elucidated by nuclear magnetic resonance (NMR) analysis. Stereochemistries of constituent amino acids were determined by chiral high performanced liquid chromatography analysis of natural and synthesized peptides.

Structure-Function of the TNF Receptor-like Cysteine-rich Domain of Osteoprotegerin

  • Shin, Joon;Kim, Young-Mee;Li, Song-Zhe;Lim, Sung-Kil;Lee, Weontae
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.352-357
    • /
    • 2008
  • Osteoprotegerin (OPG) is a soluble decoy receptor that inhibits osteoclastogenesis and is closely associated with bone resorption processes. We have designed and determined the solution structures of potent OPG analogue peptides, derived from sequences of the cysteine-rich domain of OPG. The inhibitory effects of the peptides on osteoclastogenesis are dose-dependent ($10^{-6}M-10^{-4}M$), and the activity of the linear peptide at $10^{-4}M$ is ten-fold higher than that of the cyclic OPG peptide. Both linear and cyclic peptides have a ${\beta}$-turn-like conformation and the cyclic peptide has a rigid conformation, suggesting that structural flexibility is an important factor for receptor binding. Based on structural and biochemical information about RANKL and the OPG peptides, we suggest that complex formation between the peptide and RANKL is mediated by both hydrophobic and hydrogen bonding interactions. These results provide structural insights that should aid in the design of peptidyl-mimetic inhibitors for treating metabolic bone diseases caused by abnormal osteoclast recruitment.

Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Joo, Sang-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.19-26
    • /
    • 2012
  • There are many cyclic peptides with diverse biological activities, such as antibacterial activity, immunosuppressive activity, and anti-tumor activity, and so on. Encouraged by natural cyclic peptides with biological activity, efforts have been made to develop cyclic peptides with both genetic and synthetic methods. The genetic methods include phage display, intein-based cyclic peptides, and mRNA display. The synthetic methods involve individual synthesis, parallel synthesis, as well as split-and-pool synthesis. Recent development of cyclic peptide library based on split-and-pool synthesis allows on-bead screening, in-solution screening, and microarray screening of cyclic peptides for biological activity. Cyclic peptides will be useful as receptor agonist/antagonist, RNA binding molecule, enzyme inhibitor and so on, and more cyclic peptides will emerge as therapeutic agents and biochemical tools.