Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.911

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube  

Choi, Kyu-Min (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Kwon, Chan-Ho (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Kim, Hong-Lae (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Hwang, Hyon-Seok (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Publication Information
Abstract
Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.
Keywords
Cyclic peptide nanotube; Ion selectivity; Molecular dynamics simulation; Potential of mean force; Umbrella sampling;
Citations & Related Records
 (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33.   DOI   ScienceOn
2 Roux, B. Comp. Phys. Comm. 1995, 91, 275.   DOI
3 In Free Energy Calculations; Chipot, C., Pohorille, A., Eds.; Springer: Berlin, 2007.
4 Tuckerman, M. E. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, 2010.
5 Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961   DOI
6 Grossfield, A. version 2.0.4, http://membrane.urmc.rochester.edu/content/wham 2010.
7 Leung, K.; Rempe, S. B.; Lorenz, C. D. Phys. Rev. Lett. 2006, 96, 095504.   DOI
8 Chang, R.; Violi, A. J. Phys. Chem. B 2006, 110, 5073.   DOI
9 Song, C.; Corry, B. J. Phys. Chem. B 2009, 113, 7642.   DOI
10 Sanchez-Quesada, J.; Isler, M. P.; Ghadiri, M. R. J. Am. Chem. Soc. 2002, 124, 10004.   DOI
11 Motesharei, K.; Ghadiri, M. R. J. Am. Chem. Soc. 1997, 119, 11306   DOI
12 Kim, H. S.; Hartgerink, J. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 4417   DOI
13 Fernadez-Lopez, S.; Kim, H. S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Nature 2001, 412, 452.   DOI
14 Sánchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.; Braha, O. J. Am. Chem. Soc. 2000, 122, 11757.
15 Engels, M.; Bashford, D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117, 9151   DOI
16 Asthagiri, D.; Bashford, D. Biophys. J. 2002, 82, 1176   DOI
17 Tarek, M.; Maigret, B.; Chipot, C. Biophys. J. 2003, 85, 2287.   DOI
18 Khurana, E.; Nielsen, S. O.; Ensing, B.; Klein, M. L. J. Phys. Chem. 2006, page ASAP.
19 Hwang, H.; Schatz, G. C.; Ratner, M. A. J. Phys. Chem. B 2006, 110, 26448.   DOI
20 Dehez, F.; Tarek, M.; Chipot, C. J. Phys. Chem. B 2007, 111, 10633.   DOI
21 MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; III, W. E. R.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.   DOI
22 Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657.   DOI
23 Beglov, D.; Roux, B. J. Chem. Phys. 1994, 100, 9050.   DOI
24 Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comp. Chem. 2005, 26, 1781.   DOI
25 Voet, D.; Voet, J. G. Biochemistry, 3rd ed.; John Wiley & Sons, Inc.: 2004; Vol. 1.
26 Allen, T. W.; Andersen, O. S.; Roux, B. Proc. Natl. Acad. Sci. USA 2004, 101, 117.   DOI
27 MacKinnon, R. Angew. Chem. Int. Ed. 2004, 43, 4265.   DOI
28 Hille, B. Ionic Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, Massachusettes, 2001.
29 Roux, B. J. Phys. Chem. 1991, 95, 4856   DOI
30 Zhang, D.; Gullingsrud, J.; McCammon, J. A. J. Am. Chem. Soc. 2006, 128, 3019   DOI
31 Lee, J.; Im, W. Phys. Rev. Lett. 2008, 100, 018103.   DOI
32 Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 1993, 366, 324.   DOI
33 Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Nature 1994, 369, 301.   DOI
34 Ghadiri, M. R.; Kobayashi, K.; Granja, J. R.; Chadha, R. K.; McRee, D. E. Angew. Chem. Int. Ed. Engl. 1995, 34, 93.   DOI