• Title/Summary/Keyword: cyclic behaviors

Search Result 302, Processing Time 0.034 seconds

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

Fatigue Fracture Assessment of Honeycomb Composite Side-Wall Panel Joint for the KTX Tilting Car Body (틸팅차량용 KTX 차체의 하니컴복합재 측벽판 체결부의 피로파괴평가)

  • Jeong, Dal-Woo;Kim, Jung-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The honeycomb composite joint structure designed for application to a tilting KTX railroad car body is subjected to bending loads of a cantilever type. Honeycomb sandwich composite panel-joint attached in the real tilting car body was fabricated and sectioned as several beam-joint specimens for the bending test. The fracture behaviors of these specimens under static loads were different from those under cyclic loads. Static bending loads caused shear deformation and fracture in the honeycomb core region, while fatigue cyclic bend loading caused delamination along the interface between the composite skin and the honeycomb core, and/or caused a fracture in the welded part jointed with the steel under-frame. These fracture behaviors could occur in other industrial honeycomb composite joints with similar sub-structures, and be used for improving design parameters of a honeycomb composite joint structure.

Evaluation for the Effects of Intrathecal Sildenafil on the Formalin- and Thermal-induced Nocieption of Rats (쥐를 이용한 포르말린 및 열 유발 통증에서 척수강 Sildenafil의 효과에 관한 연구)

  • Yoon, Myung Ha;Bae, Hong Buem;Shin, Dong Jin;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2006
  • Background: Cyclic guanosine monophosphate (cGMP) plays an important role in the modulation of nociception. Although local sildenafil produces antinociception, by increasing cGMP through the inhibition of phosphodiesterase 5, the effect of spinal sildenafil has not been determined. The authors evaluated the effects of intrathecal sildenafil on the nociceptive behavior evoked by formalin injection and thermal stimulation. Methods: Lumbar intrathecal catheters were implanted into rats, with formalin and Hot-Box tests used as nociceptive models. The formalin-induced nociceptive behavior (flinching response) and withdrawal latency to radiant heat were measured, and the general behaviors also observed. Results: The intrathecal administration of sildenafil produced dose-dependent suppression of the flinches in both phases in the formalin test, and increased the withdrawal latency in the Hot-Box test. No abnormal behaviors were noted. Conclusions: Sildenafil, an inhibitor of phosphodiesterase 5, is active against the nociceptive state evoked in the spinal cord by formalin and thermal stimulations. Accordingly, spinal sildenafil may be useful in the management of pain.

Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers (KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동)

  • Yoo, Hye-Min;Min, Byung-Gak;Lee, Kyu-Hwan;Byun, Joon-Hyung;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.321-325
    • /
    • 2012
  • In this work, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH/GNFs ratios in a range of 0 to 5. The effect of KOH activation was studied in the surface and pore properties of the samples for electrochemical performance. The surface properties of A-GNFs were characterized by XRD and SEM measurements. The textural properties of the A-GNFs were investigated by $N_2$/77 K adsorption isotherms using Brunauer-Emmett-Teller (BET) equation. Their electrochemical behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge performance. From the results, electrochemical performances of the A-GNFs were improved with increasing the ratio of KOH reagent. It was found that specific surface area and total pore volume of the A-GNFs were increased by KOH activation.

Analysis on the Behaviors of Precast Concrete Beam-Column Connections Subject to Cyclic Loading (반복하중을 받는 프리캐스트 콘크리트 건식 보-기둥 연결부의 거동분석)

  • Song, Hyung-Soo;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.497-506
    • /
    • 2006
  • The precast concrete beam-column connectors for the high-rise office buildings were investigated experimentally in this study. The specimens of general precast beam-column connector which is used in a domestic site, specimen of DDC(dywidag ductile connectors) of Germany, and specimen of DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical inclined shear crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.

Nonlinear FEM Analysis for Damage Assessment of Steel Members under Very-Low-Cycle Loading (극저(極低)사이클 하중하(荷重下)에서 강부재(鋼部材)의 손상도평가(損傷度評價)를 위한 유한요소해석(有限要素解析))

  • Park, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.703-710
    • /
    • 1994
  • A nonlinear FEM analysis of steel members under very-low-cycle loading has been performed in conjunction with experimental works. This analysis is an FEM tracing toward cracking of steel members under cyclic loads such as a strong earthquake. After verifying the procedure by comparing global hysteretic behaviors from the analytical and experimental results, the local stress-strain hysteresis at critical sections for large cyclic deformations was traced by the numerical analysis. Local strain history was discussed in relation to cracking. Based on the experimental and analytical results, a new approach to seismic safety assessment for steel members was proposed in this paper.

  • PDF

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu;Lee, Young-Gi;Kim, Kwang Man;Cho, Won Il;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1795-1799
    • /
    • 2013
  • The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

Electrolytic Deposition of Metal Ions Using A Liquid Cadmium Cathode

  • Shim, Joon-Bo;Ahn, Byung-Gil;Kwon, Sang-Woon;Kim, Eung-Ho;Yoo, Jae-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.337-337
    • /
    • 2004
  • As one of researches for the P & T purposes, a basic experiment on the recovery of actinide elements from the mixture with rare earth elements by means of electrorefining using a liquid cadmium cathode in the LiCl-KC1 eutectic melt was carried out. In order to examine the behaviors of electrodeposition of metal ions on a liquid electrode, recovery experiments of rare earth metals resulting from forming electrodeposits were performed by a galvanostatic electrolysis method at various current densities. A cyclic voltammetric technique was applied to determine reduction-oxidation potential of each metal element in the melt and to detect the changes of the multi component melt composition for on-line monitoring. Also, a collaboration study with RIAR was completed to test the preliminary feasibility on a recovery of actinide elements from the mixture with rare earth elements using a liquid cadmium cathode and actinide metals. Experimental results showed that the ratio of actinides to rare earths, 9: 0.5∼1 led to the rare earth content of about 5∼10 wt% in the deposit.

  • PDF