• 제목/요약/키워드: cyclic act

검색결과 54건 처리시간 0.025초

Synthesis and Characterization of a Tetrathiafulvalene-Based Polymer

  • Lee, Se-Hyun;Wang, Lei;Hwang, Seok-Ho;Lee, Myong-Hoon;Jeong, Kwang-Un
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1451-1456
    • /
    • 2012
  • A novel tetrathiafulvalene (TTF)-based main-chain polymer (6TTF-polymer) was successfully synthesized via a condensation polymerization between a newly synthesized dihydroxy TTF derivative and a malonyl chloride, and its chemical structure was characterized by spectroscopic techniques. Molecular weight of the 6TTF-polymer (9,030 g/mol by gel permeation chromatography) was large enough to form the ductile film. The electrochemical and optical properties of the 6TTF-polymer were further estimated by cyclic voltammetry, ultraviolet and photoluminescence spectroscopes. The highest occupied molecular orbital level ($E_{HOMO}$=-4.79 eV) and band-gap energy ($E_g$=1.91 eV) of the 6TTF-polymer suggested that TTF-based polymer could act as a good electron donating material for the optoelectronic applications.

Grafting 방법을 이용한 직접메탄올연료전지 애노드 촉매의 성능향상에 관한 연구 (An investigation on anode electrocatalysts using grafting method for improvement of DMFC performances)

  • 박정배;한국일;김하석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.413-416
    • /
    • 2006
  • PtRu catalyst is most widely used as anode catalyst for a direct methanol fuel cell(DMFC). To promote the efficiency of the catalysts, it Is important to increase the triple phase boundary. In this study, we have tried to increase the triple phase boundaries in preparing electrocatalysts of the fuel cells, based on the process of grafting a proton-conducting agent onto the catalyst This grafted proton-conducting agent can act as an ionomer like Nafion, currently widely used ionomer. First, we have prepared the 80wt% PtRu/Ketjen Black electrocatalyst by an improved colloidal method. And, we have grafted methylsulfonate groups $(-CH_2SO_3H)$ into the catalyst as proton-conducting agents. As results of cyclic voltammety and single cell test of the membrane electrode assembly (MEA), we can conclude that the activity of the grafted electrocatalysts is superior to that of conventional ones, in performance of DMFCs. For our further study, we will investigate the optimum ratio of catalyst/grafted proton conduct Ing agent with maximum performance of a DMFC.

  • PDF

Development of Worm-like Polymeric Drug Carriers with Multiple Ligands for Targeting Heterogeneous Breast Cancer Cells

  • Lee, A-Hyeong;Oh, Kyung-Taek;Baik, Hye-Jung;Lee, Bo-Reum;Oh, Young-Taik;Lee, Don-Haeng;Lee, Eun-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2265-2271
    • /
    • 2010
  • In this study, wormorm-like polymeric micelles were construted from poly(L-lactic acid)-b-poly(ethyelen glycol) (PLLA-b-PEG) block copolymers via worm-like (or cylindrical) self- assembly that consisted of a relatively long PLLA block ($M_n$ 7K Daltons) at the core and a relatively short PEG block ($M_n$ 2K Daltons) as the shell. Several cancer-targeting moieties (such as folate, cobalamin, and cyclic arginine-glycine-aspartic (RGD) peptide) were chemically coupled with the succinylated or maleimided PEG block of PLLA-b-PEG to act as a cancer cell-specific targeting ligand for breast cancer. The worm-like micelles with muplite cancer cell-specific ligands proved to be successful in recognizing different breast cancer cells at once. This has the potential to aid in cancer-specific drug delivery and to be used as an effective treatment for breast cancer.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

고온/저 가습 운전을 위한 고분자 전해질 연료전지용 전극 개발 (Developement of a PEFC electrodes under the high temperature and low humidified conditions)

  • 류성관;최영우;박진수;임성대;양태현;김한성;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.149-149
    • /
    • 2009
  • Generally, Nafion ionomer is used in the polymer electrolyte fuel cell (PEFC) electrodes to achieve high power density. At the high temperature operation of PEFC, however, ionic conductivity of Nafion remarkably decreased due to the evaporation of water in Nafion polymer. Recently, many researchers have focused on using the Ionic Liquids(ILs) instead of water in Nafion polymer. ILs have intrinsic properties such as good electrochemical stability, high ionic conductivity, and non-flammability. Especially, ILs play a crucial role in proton conduction by the Grottuss mechanism and act as water in water-free Nafion polymer. However, it was found that the ILs was leached out of the polymer matrix easily. In this study, we prepared membrane electrode assemblies with various contents of ILs. The effect of ILs in the electrode of each designed was investigated by a cyclic voltammetry measurement and the cell performance obtained through a single cell test using H2/Air gases. Electrodes with different contents of ILs in catalyst layer were examined at high temperature and low humidified condition.

  • PDF

Study on uplift performance of stud connector in steel-concrete composite structures

  • Ju, Xiaochen;Zeng, Zhibin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1279-1290
    • /
    • 2015
  • The main role of studs, which act as connectors of the steel-concrete composite structures, is to ensure that the steel and the concrete work together as a whole. The studs in steel-concrete composite structures bear the shearing force in the majority of cases, but in certain locations, such as the mid-span of a simply supported composite beam, the studs bear axial uplift force. The previous studies mainly focused on the shearing performance of the stud by some experimental and theoretical effort. However, rare studies involved the uplift performance of studs. In this paper, the single stud uplift test on 10 composite specimens was performed. Meanwhile, based on the test, numerical analysis was introduced to simulate the concrete damage process due to the stud uplifted from concrete. The static ultimate bearing capacity, under which the stud connector was pulled out from the damaged reinforced concrete, is much larger than the cyclic ultimate bearing capacity, under which the weld joint between stud and steel plate fractured. According to the fatigue test results of 7 specimens, the fatigue S-N curve of the construction detail after minus 2 times standard deviation is $logN=24.011-9.171\;log{\Delta}{\sigma}$, the fatigue strength corresponding to $2{\times}10^6$ cycles is 85.33 MPa.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

대각보강된 철근콘크리트 연결보의 변위비 기반 취약도 함수 개발 (Drift Ratio-based Fragility Functions for Diagonally Reinforced Concrete Coupling Beams)

  • 이창석;한상환;고혜영
    • 한국지진공학회논문집
    • /
    • 제23권2호
    • /
    • pp.131-140
    • /
    • 2019
  • Diagonally reinforced concrete coupling beams (DRCBs) have been widely adopted in reinforced concrete (RC) bearing wall systems. DRCBs are known to act as a fuse element dissipating most of seismic energies imparted to the bearing wall systems during earthquakes. Despite such importance of DRCBs, the damage estimation of such components and the corresponding consequences within the knowledge of performance based seismic design framework is not well understood. In this paper, drift-based fragility functions are developed for in-plane loaded DRCBs. Fragility functions are developed to predict the damage and to decide the repair method required for DRCBs subjected to earthquake loading. Thirty-seven experimental results are collected from seventeen published literatures for this effort. Drift-based fragility functions are developed for four damage states of DRCBs subjected to cyclic and monotonic loading associated with minor cracking, severe cracking, onset of strength loss, and significant strength loss. Damage states are defined in a consistent manner. Cumulative distribution functions are fit to the empirical data and evaluated using standard statistical methods.

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

담즙분비와 Cyclic nucleotides간의 상호관계에 관한 연구 (Study on the Relationship between Biliary Secretion and Cyclic Nucleotides)

  • 이향우;김원준;홍사석;조석준;홍사오;임중기
    • 대한약리학회지
    • /
    • 제18권1호
    • /
    • pp.43-54
    • /
    • 1982
  • Bile formation is a complex process comprised of three separate physiologic mechanism operating at two anatomical sites. At present time, it was known that at least two processes are responsible for total canalicular secretion at the bile canaliculus. One of the processes is bile salt-dependent secretion (BSDS) hypothesis that the active transport of bile salts from plasma to bile provided a primary stimulus for bile formation: the osmotic effect of actively transported bile acid was responsible for the movement of water and ions into bile. The other process is bile salt-independent secretion (ESIS), which is unrelated to bile salt secretion at the canaliculus and which may involve the active transport of sodium. The third process for bile formation involves the biliary ductal epithelium. Secretin-stimulated bile characteristically contained bicarbonate in high concentration. Therefor, it was suggested that secretin stimulated water and bicarbonate secretion from the biliary ductules. One the other hand, it was found that a large amounts of cAMP was present in canine bile but no apparent relationship between bile salt secretion and cAMP content in dog bile. However, bile flow studies in human have demonstrated that secretin and glucagon increase bile cAMP secretion as does secretin in baboons. Secretin increases baboon bile duct mucosal cAMP levels in addition to bile CAMP levels suggesting that in that species secretin-stimulated bile flow may be cAMP mediated. It has been postulated that glucagon and theophylline which increase the bile salt-independent secretion in dogs might act through an increased in liver cAMP content. In a few studies, the possible role of cAMP on bile formation has teen tested by administration of an exogenous derivative of cAMP, dibutyryl cAMP. In the rat, DB cAMP did not modify bile flow, but injection of DB cAMP in the dog promoted an increase in the bile salt-independent secretion. Because of these contradictory results, this study was carried out to examine the relationship between cyclic nucleotides and bile flow due to various bile salts as well as secretin or theophylline. Experiments were performed in rabbits with anesthesia produced by the injection of seconal(30 mg/kg). Rabbits had the cystic duct ligated and the proximal end of the divided common duct cannulated with an appropriately sized polyethylene catheter. A similar catheter was placed into the inferior vena cava for administration of drugs. Bile was collected for determination of cyclic nucleotides and total cholate in 15 min. intervals for a few hours. The results are summerized as followings. 1) Administrations of taurocholic acid or chenodeoxycholic acid increased significantly the concentrations of cAMP and cGMP in bile of rabbits. 2) Concentration of cAMP in bile during the continuous infusion of ursodeoxycholic acid, was remarkedly increased in accordance with the increase of bile flow, while on the contrary concentration of cGMP in bile was decreased significantly. 3) Dehydrocholic acid and deoxycholic acid significantly increased bile flow, total cholate output and cyclic nucleotides in bile. 4) Only cAMP concentration in bile was significantly increased from control value by secretin, while theophylline increased cAMP as well as cGMP in rabbit bile. 5) In addition, the administration of secretin to taurocholic acid-stimulated bile flow increased cAMP while theophylline produced the increases of cAMP and cGMP in bile. 6) The administration of insulin to taurocholic acid-stimulated bile flow decreased cAMP concentration, while on the contrary cGMP was remarkedly increased in rabbit bile.

  • PDF