• Title/Summary/Keyword: cyanobacterial

Search Result 227, Processing Time 0.043 seconds

Regeneration of nitrate and phosphate from toilet wastewater using waste alumina adsorbent for cultivation of Spirulina platensis

  • Lee, Sang-Jun;Park, Seonghwan;Noh, Won;Yeom, Dong-Hyuk;Kim, Sooyeon;Kim, Dae-wook;Kim, Jungmin
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • The use of different types of wastewater (WW) for the cultivation of microalgae and cyanobacteria during recent decades has provided important economic and environmental benefits. However, direct use of WW can lead to growth inhibition and biomass contamination. In the present study, we separated the key WW nutrients, namely nitrate and phosphate, by adsorption and regeneration and used the resulting regenerated water to cultivate the cyanobacterium Spirulina platensis. The adsorbent was granular γ-alumina derived from waste aluminum cans. This procedure recovered 19.9% of nitrate and 23.7% of phosphate from WW. The cyanobacterial cultures efficiently assimilated the nutrients from the medium prepared using regenerated WW, and the growth and nutrient uptake were similar to those in a synthetic medium. In addition, imposing nutrient limitations to increase carbohydrate productivity was easily achieved using regenerated wastewater nutrients, without requiring additional dilution or complex processing. In acute toxicity tests, the harvested biomass in a regenerated medium had similar toxicity levels compared to the biomass obtained from a synthetic medium. The proposed method of using regenerated WW to produce contamination-free biomass has broad potential applications.

Temporal and Spatial Distribution of Geosmin and 2-MIB in the Daecheong Reservoir (대청호에서 Geosmin, 2-MIB의 시간적·공간적 분포 특성)

  • Kim, Kyo-Young;Khan, Jong-Beom;Choi, In-Chan;Hong, Seoun-Hwa;Lee, Jun-Bae;Lee, Soo-Hyung;Lee, Jay-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • BACKGROUND: Contamination of source water by odorous compounds are one of the problems related to the water quality management, especially in Korea where surface water is used as drinking water. Geosmin (1, 10-trans-dimethyl-trans-9-decalol) and 2-MIB (2-methyl isoborneol : 1,2,7,7-tetramethyl-exo-bicycloheptan-2-ol) are commonly recognized earthy-musty odor compounds produced by algae causing serious problems to the drinking water purification facilities. METHODS AND RESULTS: In this study, spatial and temporal distribution of the odor compounds, geosmin and 2-MIB were investigated along with the development of phytoplankton in the Daechung reservoir from July 2012 to October 2013. CONCLUSION: Concentrations and frequencys of detection of both compounds increased from April to October which were related to cyanobacterial bloom periods. However, concentrations of odor compounds were not related to the number of cyanobacteria. Concentrations of both cyanobacteria and geosmin showed similar trends with depth. Pearson correlation analyses showed that geosmin concentration exhibited significant correlation with the count of Anabaena macrospora and Aphanizomenon flos-aquae. On the other hand, 2-MIB concentration showed a significant correlation with the count of Anabaena smithii.

Relation between Rainfall and Phytoplankton Community in Daechung Reservoir (대청호에서 강우와 식물플랑크톤 군집의 관계)

  • Joung Seung-Hyun;Ahn Chi-Yong;Choi Aeran;Jang Kam-Yong;Oh Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.57-63
    • /
    • 2005
  • The phytoplankton community, environmental factors, and rainfall were investigated from July to October in 2001 and 2003 on Dam site in Daechung Reservoir. The monthly average rainfall in the investigated period were 91.3 and 265.3 mm in 2001 and 2003, respectively. The maximum chlorophyll a concentration was observed higher at 131.5 ㎍ L/sup -1/ in 2003 than at 45.4 ㎍ L/sup -1/ in 2001. The cyanobacterial number in 2001 was counted up to over 200,000 cells mL/sup -1/, which was much higher than the maximum number of 49,000 cells mL/sup -1/ in 2003. The relative abundance of cyanobacteria in the phytoplankton community was about 97% in 2001 and 74% in 2003. Microcystis spp. were absolutely dominant species in 2001, while a couple of cyanobacteria such as Oscillatoria spp., Phormidium spp. Chroococcus spp. and Microcystis spp. were dominant species in 2003. Consequently, it seemed that rainfall affected the diversity of phytoplankton species and decreased the density of bloom-forming cyanobacteria.

Effect of Chlorination on Disinfection Byproducts Production and Release of Microcystins from Bloom-forming Algae (녹조현상 원인조류들의 염소처리에 의한 소독부산물 생성 및 microcystins 유출)

  • Park, Hae-Kyung;Seo, Yong-Chan;Cho, Il-Hyung;Park, Byung-Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.513-520
    • /
    • 2006
  • The effect of chlorination on disinfection byproducts (DBPs) production from bloom-forming freshwater algae including 7 strains of cyanobacteria and 6 strains of diatoms was investigated. The release and degradation of hepatotoxin (microcystins) by the chlorination on Microcystis under differential condition of the chlorination time and dose were also investigated. The disinfection byproducts formation potentials (DBPFP) of cyanobacterial species and diatoms were ranged from 0.017 to $0.070{\mu}mol\;DBPs/mg$ C and from 0.129 to $0.708{\mu}mol\;DBPs/mg$ C respectively. Among three major groups of DBPs, haloacetonitrils (HANs) was major product in most test strains except Aphanizomenon sp. and Oscillatoria sp. Haloacetic acids (HAAs) was less than 5 % of total DBPs. Chloroform and dichloroacetonitril (DCAN) were dominant compounds in trihalomethanes (THMs) and HANs respectively. After 4 hours chlorination of toxic Microcystis aeruginosa under the dose range of 0.5 to $10mg\;Cl_2/L$, the concentration of intracellular microcystins decreased, but dissolved dissolved microcystins concentration increased with the treatment of more than $3mg\;Cl_2/L$. However the total amount of microcystins was almost constant even at $10mg\;Cl_2/L$ of chlorination. To conclude, our results indicate that the chlorination causes algal cell lysis and release of intracellular microcystins in the intact form to surrounding waters.

Polyphasic delimitation of a filamentous marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description of two Brazilian species

  • Caires, Taiara A.;Lyra, Goia de M.;Hentschke, Guilherme S.;da Silva, Aaron Matheus S.;de Araujo, Valter L.;Sant'Anna, Celia L.;Nunes, Jose Marcos de C.
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.291-304
    • /
    • 2018
  • Lyngbya C. Agardh ex Gomont is a nonheterocytous cyanobacterial genus whose evolutionary history is still poorly known. The traditionally defined Lyngbya has been demonstrated to be polyphyletic, including at least five distinct clades, some of which have been proposed as new genera. Intraspecific diversity is also clearly underestimated in Lyngbya due to the lack of unique morphological characters to differentiate species. In this study, we describe the new genus Capillus T. A. Caires, C. L. Sant'Anna et J. M. C. Nunes from benthic marine environments, including two new Brazilian species (here described as C. salinus T. A. Caires, C. L. Sant'Anna et J. M. C. Nunes, and C. tropicalis T. A. Caires, C. L. Sant'Anna et J. M. C. Nunes), and two species yet to be described, one of them from India (Capillus sp. 2.1), and the other from United States of America, based on strain PCC 7419. Capillus species presented cross-wise diagonal fragmentation, assisted or not by necridic cells, which has not been previously mentioned for Lyngbya. Ultrastructural analyses showed that C. salinus and C. tropicalis have numerous gas vesicles, which are rarely described for benthic marine species. The new genus formed a well-supported clade, and the D1-D1' and Box B secondary structures of internal transcribed spacer also supported the proposal of its new species. These findings help to clarify the diversity of species in the Lyngbya complex and the taxonomy of the group, and highlight the need of further floristic surveys in tropical coastal environments, which remain poorly studied.

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains (geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

Analysis of Environmental Factors Associated with Cyanobacteria Dominance in Baekje Weir and Juksan Weir (백제보와 죽산보에서 남조류 우점 환경요인 분석)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyung-Seok;Cho, Young-Cheol;Lee, Hee-Suk;Park, Yeon-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • Followingthe Four Rivers Project, cyanobacterial blooms have been frequently observed in the upstream of the installed weirs. The aim of this study was to characterize the major environmental factors that are associated with the cyanobacteria dominance in Baekje Weir (Geum River) and Juksan Weir (Youngsan River) based on intensive experiments and systematic data mining methods. The factors related to the cyanobacteria dominance include7-days cumulative rainfall (APRCP7), 7-days averaged flow (Q7day), water temperature (Temp), stratification strength (${\Delta}T$), electronic conductivity (EC), DO, pH, $NO_3-N$, $NH_3-N$, TN, TP, $PO_4-P$, Chl-a, Fe, BOD, COD, TOC, and $SiO_2$. The most highly correlatedfactors to the dominant cyanobacteria were found to be EC, Temp, Q7day, $PO_4-P$ in theBaekje Weir. On the other hand, those dominant in the Juksan Weir were ${\Delta}T$, TOC, Temp, EC and TN. The EC showed a strong correlation with cyanobacteria dominance in both weirs because a high EC represents a persisted low flow condition. The cyanobacteria dominance was as high as 56 % when the EC was equal or greater than $418{\mu}S/cm$ in Baekje Weir. It was as high as 63% when the ${\Delta}T{\geq}2.1^{\circ}C$ in the Juksan Weir. However, nutrients showed a minor correlation with cyanobacteria dominance in both weirs. The results suggest that the cyanobacteria dominate in astate where the water flow rate is low, water temperature is high and thermal stratification is strengthened. Therefore, the improvement of flow regimes is the most important to prevent persistent thermal stratification and formation of cyanobacteria bloom in theBaekje and JuksanWeirs.

Empirical evaluation for design parameters and operating characteristics of the integrated sedimentation and dissolved air flotation (SeDAF) process at the pilot-scale plant (파일럿 플랜트 규모에서 일체형 침전부상공정 (SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가)

  • Jang, Yeoju;Jung, Jinhong;Lim, Hyunman;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Eutrophication and algal blooms can lead to increase of taste and odor compounds and health problems by cyanobacterial toxins. To cope with these eco-social issues, Ministry of Environment in Korea has been reinforcing the effluent standards of wastewater treatment facilities. As a result, various advanced phosphorus removal processes have been adopted in each wastewater treatment plant nation-widely. However, a lot of existing advanced wastewater treatment processes have been facing the problems of expensive cost in operation and excessive sludge production caused by high dosage of coagulant. In this study, the sedimentation and dissolved air flotation (SeDAF) process integrated with sedimentation and flotation has been developed for enhanced phosphorus removal in wastewater treatment facilities. Design and operating parameters of the SeDAF process with the capacity of 100 ㎥/d were determined, and a demonstration plant has been installed and operated at I wastewater treatment facility (located in Gyeonggi-do) for the verification of field applicability. Several empirical evaluations for the SeDAF process were performed at demonstration-plant scale, and the results showed clearly that T-P and turbidity values of treated water were to satisfy the highest effluent standards below 0.2 mg/L and 2.0 NTU stably for all of operation cases.

Analysis of Microcystis Bloom in Daecheong Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청호 Microcystis Bloom 해석)

  • Chung, Se Woong;Lee, Heung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.73-87
    • /
    • 2011
  • An abnormal mono-specific bloom of the cyanobacterium Microcystis aeruginosa had developed at a specific location (transitional zone, monitoring station of Hoenam) in Daecheong Reservoir from middle of July to early August, 2001. The maximum cell counts during the peak bloom reached 1,477,500 cells/mL, which was more than 6~10 times greater than those at other monitoring sites. The hypothesis of this study is that the timing and location of the algal bloom was highly correlated with the local environmental niche that was controled by physical processes such as hydrodynamic mixing and pollutant transport in the reservoir. A three-dimensional, coupled hydrodynamic and ecological model, ELCOM-CAEDYM, was applied to the period of development and subsequent decline of the bloom. The model was calibrated against observed water temperature profiles and water quality variables for different locations, and applied to reproduce the algal bloom event and justify the limiting factor that controled the Microcystis bloom at R3. The simulation results supported the hypothesis that the phosphorus loading induced from a contaminated tributary during several runoff events are closely related to the rapid growth of Microcystis during the period of bloom. Also the physical environments of the reservoir such as a strong thermal stratification and weak wind velocity conditions provided competitive advantage to Microcystis given its light adaptation capability. The results show how the ELCOM-CAEDYM captures the complex interactions between the hydrodynamic and biogeochemical processes, and the local environmental niche that is preferable for cyanobacterial species growth.

Mixotrophic Cultivation of a Native Cyanobacterium, Pseudanabaena mucicola GO0704, to Produce Phycobiliprotein and Biodiesel

  • Kim, Shin Myung;Bae, Eun Hee;Kim, Jee Young;Kang, Jae-Shin;Choi, Yoon-E
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1325-1334
    • /
    • 2022
  • Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].