• Title/Summary/Keyword: cyanobacterial

Search Result 227, Processing Time 0.024 seconds

Recruitment Potential of Cyanobacterial Harmful Algae (Genus Aphanizomenon) in the Winter Season in Boryeong Reservoir, Korea: Link to Water-level Drawdown (동계 보령호에서 수위 강하와 연계된 유해 남조류 Aphanizomenon sp.의 재입 잠재성)

  • Shin, Jae-Ki;Jeon, Gyeonghye;Kim, Youngsung;Kim, Mi-Kyung;Kim, Nan-Young;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2017
  • Cyanobacteria Aphanizomenon population is widely distributed in the world, and well known as harmful algae by producing toxins and off-flavor materials, thus belonging to one of the taxa that became more interested in the field of limnoecology. In this study, the frequency, intensity, and duration of Aphanizomenon occurrence were increased with the abnormal drawdown of water level in the winter in Boryeong Reservoir, and the spatial and temporal characteristics of them are compared with each other in the perspective of hydrometeorology (1998 to 2017) and limnology (2010 to 2017). In Korea, Aphanizomenon flourished mainly in high temperature, and the appearance in the low temperature was rare in total five times. The harmful cyanobacteria Aphanizomenon was observed in the low temperature (December to February) in Boryeong Reservoir from 2014, and then reached a maximum value of $2,160cells\;mL^{-1}$ in January 2017. In addition, the period exceeding $1,000cells\;mL^{-1}$ at this time was more than 3 months. This was simultaneously associated with abnormal water level fluctuation in the low temperature ($<10^{\circ}C$). The large drawdown of water level in the winter season has the potential to promote or amplify the germination and development of harmful algae. Also, subsequent water quality and ecological impacts(e.g., algal toxins and off-flavor substances) need to be considered carefully.

Influences of Thermal Effluents on the Epilithic Algal Community in Small Stream Originating from the Seokjung Hot Spring (온천 배수 유입에 따른 소형 하천의 생태계 변화와 회복에 관한 연구 -소형 하천에서 온천 배수가 부착조류 군집에 미치는 영향)

  • 정연태;문연자;김미연;최민규;길봉섭
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.345-358
    • /
    • 1999
  • To study the influences of thermal effluents flowing from hot spring on epilithic algal community, seasonal survey was carried out at stream and its watersheds from Seokjeong hot spring in Chollabuk-Do, Korea. Totally 7 points were divided into three regions fur sampling of water and epilithic algae, such as the direct effected, uneffected and the mixed region, respectively. At the discharging points of effluents, a dark-green cyanobacterial mat were remarkably constructed, mainly by two cyanobacteria, Oscillatoria and Phormidium. The mat formation were more obvious at low temperature than any other season, and even result in disappear with downstream and season. Totally, one hundred and fifty-three taxa of epilithic algae were classified with 15 unidentified species. Among the, diatoms occupied 58% of total species, whereas cyanobacteria was 67% of total biomass, comparatively. In terms of stream direction, relative abundance of cyanobacteria was only limited in the upstream in cold season, and result in this pattern disappeared with season change. Although all physicochemical variables at the discharging points, was very high, compare to other points, they were quickly decreased downstream. Among them, some heavy metals were not detected or below the detection levels at downstream. Nitrate nitrogen increased with downstream, as well as phosphorus and sulfate have a similar trend throughout, while ammonia quickly decreased in the initial period of discharging effluents. This suggest that although the thermal effluent with high temperature and organic compounds could polluted the small study stream, various contributions such as flowing water, intake of uneffected streawater and collaboration of cyanobacterial mat and stream bottom gradually induces a stable water system.

  • PDF

Application of Antimicrobial Peptides against Microcystis aeruginosa to Control Harmful Algal Blooms (항균 펩타이드를 이용한 녹조현상 원인종 Microcystis aeruginosa의 제어)

  • Han, Sang-Il;Park, Yoonkyung;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.601-609
    • /
    • 2018
  • Microcystis aeruginosa, a freshwater cyanobacteria species known to be one of the most predominant species responsible for cyanobacterial harmful algal blooms (CyanoHABs). It has been frequently associated with the contamination of neurotoxins and peptide hepatotoxins, such as microcystin and lipopolysaccharides-LPSs. CyanoHABs control technologies so far put in place do not provide a fundamental solution and cause secondary pollution linked with the control measures. For this study, algicidal peptides, which have been reported to be non-toxic and to have antimicrobial properties, were employed for the development of novel eco-friendly control against CyanoHABs. The four peptides (CMA1, CMA2, HPA3P, and HPA3NT3) selected in this study showed significant algicidal effects against M. aeruginosa cells inducing cell aggregation and flotation. Moreover, the newly generated peptides (K160242-5) with certain modifications also displayed high algicidal activity. The algicidal activity of the peptides was found to depend on the concentrations and structures of each of amino acid. The results of this study suggested a novel possibility of CyanoHABs control using the non-toxic algicidal peptides.

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed (대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.

Potential in the Application for Biological Control of Harmful Algal Bloom Cased by Microcystis aeruginosa (유해성 조류 Microcystis aeruginosa의 생물학적 제어를 위한 미소생물제재의 적용 실험)

  • Kim, Baik-Ho;Choi, Hee-Jin;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.64-69
    • /
    • 2004
  • Growth inhibition of Microcystis aeruginosa was examined with single-or mixed treatment of algicidal bacterium Streptomyces neyagawensis and heterotrich ciliate Stentor roeseli, which isolated from natural freshwater. The harmful Cyanobac-terium, Microcystis aeruginosa density was effectively suppressed by the algicidal bacterium Streptomyces neyagawensis, and the bacterial biomass was few changed. The heterotrich ciliate S, roegeji isolated from the eutrophic Pal'tang riverine, Korea suppressed the algal biomass effectively. But mixed-treatment of both bio-agents was less effective, leading to an increase in algal density.

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

Characterization of Algal Community of Yongdam Reservoir and Identification of Ecological Factors Inducing the Changes in Community Composition (용담호 조류군집의 시공간적 분포와 조류발생 요인분석)

  • Kim, Hyun-su;Jeong, Il-hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.121-134
    • /
    • 2015
  • Spatial and temporal changes in algal population in Yongdam reservoir and ecological factors that induced the changes in the size and composition of algal population were investigated by monthly sampling at ten locations in the reservoir. Nutritional state of the reservoir was identified to be phosphorus-limited with nitrogen to phosphorus (N : P) ratio much greater than 17 in most samples. Algal population was dominated by three taxonomic groups, diatoms, chlorophytes and cyanobacteria. Although explosive algal growth was not observed in the summer, algal population showed transition with time of the dominant algal type from diatoms in the winter to cyanobacteria in the summer. Chlorophyta was not the dominant group in the reservoir although they maintained relatively stable number of cells in the reservoir and showed increase in population from March to May. The application of statistical methods revealed that the factors inducing changes in cell number of each group were water temperature for diatoms and cyanobacteria and phosphorus concentration for chlorophyte. Fluctuation of cyanobacterial population was mainly observed near the inlet of tributaries while diatoms showed higher variation inside the reservoir.

Control of Cyanobacteria and Phytoplankton Using Physico-chemical Methods (물리·화학적 방법을 이용한 Cyanobacteria와 식물 플랑크톤의 제어)

  • Jheong, Weon-Hwa;Jeon, Eun-Hyung;Ahn, Tea-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.75-84
    • /
    • 2004
  • Loess, PAC, MACF and plants were applied to the control of the phytoplankton bloom in laboratory and in field, In field experiment using oil fence, 5ppm concentration of coagulant(PAC) was observed to be effective in controlling the cyanobacterial bloom, resulting in 90% removal of cyanobacteria and phytoplankton from the water column, hi case of Synedra sp., however, only 50% of biomass decreased with the same PAC concentration. MACF(micro-air bubble coagulation and floating), a kind of physicochemical method, was applied to the column of the Kyongan stream and resulted in over 80% chlorophyll a and 73.5% TP removal, Chlorophyll a and total phosphorus were effectively removed from water body when 2.0 g/L of loess with the particle radius of 125 ${\mu}m$ was inputted. In case of experiments involving plants, big cone pine, gingko, and pine needle were observed to be effective in restraining phytoplankton bloom at 0.5g/200ml level. During a field test done at Kyungan stream, where Microcystis heavily occurred, Pine needle and big cone pine were observed to be effective on suppressing algal growth.

Detection of Toxigenicity of Cyanobacteria by Molecular Method (분자생물학적 방법에 의한 남조류의 독성 생성능의 확인)

  • Lee, Kyung-Lak;Jheong, Weon-Hwa;Kim, Jong-Min;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.149-154
    • /
    • 2007
  • In the present study, we performed the PCR assay using TOX2P/TOX2M primer targeting a specific region within mcyB gene to identify potential microcystin-producing cyanobacteria. TOX2P/TOX2M primer set was effective in amplifying mcy gene in the field samples containing Microcystis spp. of 1,000 cells per mL. Moreover, the results from the PCR assay agreed with those of the ELISA analysis. Consequently, this study demonstrated that TOX2P/TOX2M primer set can be used as a genetic probe for the early detection of cyanobacterial toxigenicity in Korean water bodies.

Vertical distribution and seasonal changes of phytoplankton communities in the Hoe-Dong Reservoir

  • Jung-Gon, Kim;Su-Youn, Kim;Sun-Hee, Kwon;Sangkyun, LEE;Gea-Jae, Joo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.251-254
    • /
    • 2000
  • In this study, we investigated vertical distribution and seasonal changes of phytophlankton community in the Hae-Dong Reservoir from March 1999 to Feburary 2000. This reservoir is relativly small (surface area, 2.7 $km^2$) and is the source of drinking water supply to the eastern part of Pusan City. Samples were collected at 2 sites (1, 3, and 6 m; site 1, in front of the dam; site 2, inlet). The dominant group was Bacillriophyceae at both sites (over 63%), and other groups exhibited seasonal changes (high cyanobacterial density in summer; green algal communities in winter). Chrysophyceae and Dinophyceae were maintained lower level during the study period. Along the water depth, all classess of phytoplankton did not show distintive vertical distribution at both sites except during the blue-green algal bloom in the middle of July and late September. The phytoplankton community dynamics in the Hoe-Dong Reservoir was strongly affected by the hydrological factors such as concentrated precipitation and short retention time.

  • PDF