• Title/Summary/Keyword: cutting geometry

Search Result 260, Processing Time 0.028 seconds

Strain Recovery Analysis of Non-uniform Composite Beam with Arbitrary Cross-section and Material Distribution Using VABS (VABS를 이용한 임의의 단면과 재료 분포를 가진 비균일 복합재료 보의 변형률 복원 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.204-211
    • /
    • 2015
  • This paper presents a theory related to a two-dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite wing structure with initial twist. Using VABS including a related theory, the design process of the composite rotor blade has been described. Cross-sectional analysis was performed at cutting point including all the details of geometry and material. Stiffness matrix and mass matrix were linked to each section to make 1D beam model. The 3D strain distributions within the structure were recovered based on the global behavior of the 1D beam analysis and visualize numerical results.

A Study on Geometric Definition and 5-Axis Machining of End Mill with Insert Tip (Insert Tip용 End Mill 공구의 형상정의와 5-축 가공에 관한 연구)

  • 조현덕;박영원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2002
  • This study describes the geometric characteristics and the 5-axis machining method in order to make end mill cutter coming with insert tips. End mill geometry is consisted of flute part and insert tip part. Flute part modeled by using ruled surfaces with constant helix angle, and insert tip part modeled by rectangular planes containing tapped hole of specified direction in its center. In this study, the modeled insert tip part considered both of a radial rake angle and a axial rake angle, because they were important cutting conditions. In order to machining the virtual end mill defined from geometric characteristics, we programmed a special software to machining the end mill considered in this study. This software can generate NC-codes about following processes, end milling or ball end milling of flute part end milling of rectangular plane, centering of hole, drilling of hole, and tapping of hole. Ant sampled end mills were modeled and machined on 5-axis CNC machining center with two index tables. Since machined end mills were very agreeable to designed end mills, we saw that the method proposed in this study can be very useful for manufacturing of end mill body with insert tip.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Characteristics Evaluation of the Lens for Underwater Acoustic Imaging (수중음향 영상화를 위한 렌즈 제작 및 특성 평가)

  • Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Yo-Han;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.687-696
    • /
    • 2016
  • A series of process to design an acoustic lens for underwater imaging is reviewed and the method to evaluate characteristics of the lens is investigated. If the target specification of lens is given, the design process consists of the material selection, evaluation of its properties, lens geometry design, prediction of lens characteristics, manufacturing, and evaluation by measurement. In this study, an actual acoustical lens is made by cutting polymethylpentene block. The characteristics of lens are predicted by the hybrid method, combination of ray tracing and Rayleigh integral. For the direct comparison between the prediction and measurement results, a simulation method based on the equivalent source method is suggested to reflect the actual radiation pattern of transducer used for measurements. Finally, the measurement is conducted in a small water tank to observe the actual characteristics of the manufactured lens.

Study on the Dislocation Structure and Work Hardening of Single-crystal L12-Ni3Al Intermetallic Compounds Prepared by Bridgman Method

  • Chang-Suk Han;Chang-Hwan Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.215-220
    • /
    • 2024
  • Slip lines and dislocation structures developed by deformation at 77 K, 292 K and 500 K have been investigated by an optical microscope and a high-voltage electron microscope. Slip patterns after the deformation by 4-5% at 77 K and 500 K are compared. From the slip line geometry, operation of both primary and secondary {111} slips have been confirmed. However, the primary slip lines formed at 77 K appear coarser and more pronounced than those at 500 K. This indicates that a larger number of dislocations have moved on the same plane at 77 K. Another characteristic difference noted here is that the slip lines are straight and pass through the specimen from one end to the other at 77 K. On the contrary, slip lines are rather faint at 500 K. The typical change found at 77 K is the increase in the [$0{\bar{1}}1$] dipole dislocations and generation of the [$10{\bar{1}}$] screw dipoles upon increase in the strain from 1.2% to 5.2%. This is the indication that the straight dipole dislocations were formed by a pinning effect due to jogs generated by mutual cutting between primary and secondary dislocations. Extremely fine slip has been noted after deformation at 500 K indicating that the usual Frank-Read source is not operative at high temperatures due to the strong KW locking.

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant (Self-drilling 방식의 마이크로임플란트 식립에 의해 발생하는 피질골 스트레인의 유한요소해석)

  • Park, Jin-Seo;Yu, Won-Jae;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner. Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar. Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.

Numerical Method for Improving the Accuracy of Molten Metal Flow (주조유동의 정확도 개선을 위한 수치기법 연구)

  • Choi, Young-Sim;Hong, Jun-Ho;Hwang, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.253-258
    • /
    • 2012
  • The Cartesian grid system has generally been used in casting simulations, even though it does not represent sloped and curved surfaces very well. These distorted boundaries cause several problems, and special treatment is necessary to resolve them. A cut cell method on a Cartesian grid has been developed for the simulation of threedimensional mold filling. Cut cells at a cast/mold interface are generated on Cartesian grids, and the governing equations are computed using the volume and areas of the cast at the cut cells. In this paper, we propose a new method based on the partial cell treatment (PCT) that can consider the cutting cells which are cut by the cast and the mold. This method provides a better representation of the surface geometry, and will be used in the computation of velocities that are defined on the cell boundaries in the Cartesian gird system. Various test examples for several casting process are computed and validated.

Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure (수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석)

  • Nho, In Sik;Ryu, Jae Won;Lim, Seung Jae;Cho, Sang Rai;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

A Study on Comparing Characteristics of Frank Loyd Wright's Furniture Design with Charles Rennie Mackintosh (프랭크 로이드 라이트와 찰스 레니 맥킨토시의 가구디자인 비교 연구)

  • Ha, Sook-Nyung;Han, Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.91-99
    • /
    • 2010
  • There is a commonality between Frank Lloyd Wright and Charles Rennie Mackintosh in that they created the new patterns of geometric Art Nouveau from the late 19th and early 20th centuries. This study compares the furniture of Wright and Mackintosh who had significant impacts on the development of modern design for each of the periods divided by their design feature to find the individualities and similarities of their design. It is an analytical approach with an accurate understanding of the design trends of the Art Nouveau era. The results of the furniture comparison are as follows: The finding is that Wright and Mackintosh designed creative furniture in harmony with a specific indoor space, Organic design was well expressed through the selection and use of wooden materials, Based on the understanding of tree characteristics, they did not use detailed decorations, but designed the simple and rigorous forms of furniture with highlighted interest in geometry. As for shape, Wright's furniture in his early days tend to be look largely formal and heavy. Since his debut in Japan in 1905, the furniture design became very sophisticated. On the other hand, Mackintosh's chairs are characterized by plenty of geometric patterns and long back. In many cases, his chairs were designed as part of formative elements in space, not for the purpose of furniture itself. As for materials and colors, Wright used mainly cherry wood. And he also utilized metals colored in olive green, red-brown and others for office furniture. The frames, fabrics and leather used for most of the furniture have natural colors, which are harmonious with spaces. Meantime, Mackintosh used primarily oak and ash trees. He used seat cushions and various colors to make the design of furniture have a sophisticated and simple image. The materials used for seat panel are horsehair, rush, silk and leather. He applied these materials to the furniture by weaving or cutting them.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.