• Title/Summary/Keyword: cutter load

Search Result 45, Processing Time 0.02 seconds

In-Process Cutter Runout Compensation Using Repetitive Learning Control

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.13-18
    • /
    • 2003
  • This paper presents the in-process compensation to control cutter ronout and to improve the machined surface quality. Cutter ronout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by cutter ronout compensation.

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

Analysis of Cutter and Design of Chip Processing System for Large Scale Machine Tool (대형 공작기계용 칩 처리시스템 설계 및 커터 해석)

  • Lee, Jong-Moon;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.147-153
    • /
    • 2012
  • The demands of the large scale machine tools, for instance, such as planomiller, turning machine, boring machine, NC machine, have been gradually increased in recent years. As the performances of machine tools and/or cutting tools are advanced, it is possible to perform high-speed and high-precision cutting works. The effective treatment of wet chip, which is discharged from cutting works, becomes very important problems. Therefore, this study is forced on the design of large scale machine tools using CATIA V5R18 and analysis of cutter, which is considered as essential equipment in large scale machine tools, using MSC.Nastran & MSC.Patran. Especially, the relations between tolerated load of cutter, driving horse power and rpm of driving shaft in chip processing system are investigated through analysis. As the results, the reliability of design could be improved by evaluating simulated numerical values, it showed that tolerated loads of supported part and edged part of cutter are 87,000N and 14,450N, respectively.

Development of Cutting Route Recognition Technology of a Double-Blade Road Cutter Using a Vision Sensor (비전센서를 활용한 양날 도로절단기의 절단경로 인식 기술 개발)

  • Myoung Kook Seo;Jin Wook Kown;Hwang Hun Jeong;Jung Ham Ju;Young Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2023
  • With the recent trend of intelligence and automation of construction work, a double-blade road cutter is being developed that automatically enables cutting along the cutting line marked on the road using a vision system. The road cutter can recognize the cutting line through the camera and correct the driving route in real-time, and it detects the load of the cutting blade in real-time to control the driving speed in case of overload to protect workers and cutting blades. In this study, a vision system mounted on a double-blade road cutter was developed. A cutting route recognition technology was developed to stably recognize cutting lines displayed on non-uniform road surfaces, and performance was verified in similar environments. In addition, a vision sensor protection module was developed to prevent foreign substances (dust, water, etc.) generated during cutting from being attached to the camera.

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

Analysis of Tooth Strength and Cutter Tooth Profile in Harmonic Drive Reducer (조속식 감속기의 치 강도 및 커터치형 해석)

  • 전완주;오박균
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1989
  • This paper deals with strength analysis of tooth and method of manufacture of external tooth profile in harmonic drive. From the calculation of load imposed on the contact teeth, moximum contact stress is investigated to design the addendum modification coefficient. New tooth profile of the external gear is generated according to the law of gearing, assuming that internal gear has involute tooth profile. External tooth profile can't be manufactured by conventional exclusive tools which have pressure angle of 20$\circ$. The method to design cutter tooth profile is presented.

Performance estimation of conical picks with slim design by the linear cutting test (I): depending on attack angle variation (선형절삭시험에 의한 슬림 코니컬커터의 절삭성능 평가(I): Attack Angle 변화에 의한 결과)

  • Choi, Soon-Wook;Chang, Soo-Ho;Park, Young-Taek;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.573-584
    • /
    • 2014
  • In this study, the variations of cutter acting forces depending on cutting conditions were examined to obtain basic data for roadheader cutting head design. The linear cutting tests were performed in the condition of different attack angles, penetration depths, cutter spacings by using a slim conical pick for the light cutting condition. Cutter acting forces were measured by 3-directional load cell under different test conditions, and the analysis for cutting performance were carried out after calculating average values of the measured results. It is confirmed that the optimal cutting condition for the mortar specimen is the 50 degree attack angle, the cutter spacing of 12 mm, the cutting depth of 9 mm which are obtained from the analysis results. In addition, 50 degree attack angle is more effective than 45 degree attack angle to design optimal specifications of cutting head.

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (I) - Design and Construction of a Prototype - (보통형 콤바인 부착용 유채 예취장치 개발(I) - 시작기 설계 및 제작 -)

  • Lee, Choung-Keun;Choi, Yong;Jun, Hyun-Jong;Lee, Seung-Kyu;Ryu, Chan-Seok;Kim, Dong-Min
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.371-378
    • /
    • 2008
  • Bio-diesel applications seem to be extended due to bio-diesel policies and changes of agricultural environment. This study was conducted to develop a rapeseed reaping equipment attachable to the conventional combine. This paper was intended to report concept design, process and manufacturing of the prototype rapeseed reaping equipment. For concept design, physical properties of "SUNMANG", which is a typical rapeseed as bio-diesel materials, were considered. The designed prototype rapeseed reaping equipment consisted of wide-width plates, finger type knifes, side cutter knifes and drive equipments. The wide-width plate is 2.1 m wide, 0.7 m long, and 0.002 m thick. The finger type cutter knifes have 14.5 fingers, 30 knifes, and the specification was 7.6 cm of pitch, 8.3 cm of length and $21^{\circ}$ of cutting angle. The side cutter knifes consisted of a hydraulic pump, a hydraulic motor, a flow control and a relief valve, a hydraulic hose, a driving equipment and a reciprocating cutter knife. The 18 reciprocating cutter knifes were 137 cm long and knife pitch, knife length and cutting angle were 7.7 cm, 10.5 cm, and $18^{\circ}$. Prototype weight of the rapeseed reaping equipment was heavier by 272 kg when compared with the manual reaping equipments. Load distributions of left and right side showed 50% and 49%, and those of front and rear side showed 64% and 36%. Static turn-over angles in left and right of the prototype were $38.1^{\circ}$ and $38.7^{\circ}$, respectively. The designed prototype rapeseed reaping equipment was properly mounted at the front of a conventional combine.

Cutter Runout Elimination in End Milling through Two-Axes PI Force Control (엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구)

  • Noh, Jong-Ho;Hwang, Joon;Liang, Steven Y.;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF