본 연구는 21세기에 필요한 핵심적인 학습 능력을 연구하고 미래 사회 국가 발전에 필요한 핵심 인력을 양성하는데 있다. '21세기 학습 능력 프로젝트'는 학습자의 학습 능력과 개인 회적으로 가치 있는 주제를 중심으로 기존 지식과 학문을 다학문적, 통합적으로 접근 하는 것이다. 국내에서도 학습 능력 배양을 위한 다양한 교과 간 통합 교육과정의 시도가 있었으나 각 교과의 내용과 특성의 차이를 충분히 이해하여 효과적으로 교수할 수 있는 교사가 부족하고 현장에서 쉽게 적용하는데 어려움이 있다. 이에 본 연구는 21세기에 필요한 학습 능력 신장을 위해 학문의 지식을 통합하는 다학문적 맞춤형 교육과정을 개발하고 이를 효율적으로 지원하기위해 교육과정 실태를 분석 연구하고 그 결과로 초 중등학교에 적용할 수 있는 다학문 맞춤형 학문 통합 모형을 제안한다.
Aviation ICT technology is a convergence technology between aviation and electronics, and has a wide variety of applications, including navigation and education. Among them, in the field of aerial pilot training, there are many problems such as the possibility of accidents during training and the lack of coping skills for various situations. This raises the need for a simulated pilot training system similar to actual training. In this paper, pilot training data were collected in pilot training system using VR/AR to increase immersion in flight training, and Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment that can recommend effective training courses to pilots is proposed. To verify the accuracy of the recommendation, the performance of the proposed collaborative deep learning algorithm with the existing recommendation algorithm was evaluated, and the flight test score was measured based on the pilot's training data base, and the deviations of each result were compared. The proposed service platform can expect more reliable recommendation results than previous studies, and the user survey for verification showed high satisfaction.
본 논문에서는인공지능(AI; Artificial Intelligence)알고리즘을 활용한 조음 장애 아동들의 '개인화된 맞춤형 학습' 모바일 애플리케이션을 제시한다. 조음과 관련된 빅데이터(Big Data)를 수집-정제-가공한 데이터 셋(Data Set)으로 학습자의 조음 상황 및 정도를 분석, 판단, 예측한다. 특히, 인공지능 활용 시 기존 애플리케이션에 비해 어떻게 개선되고 고도화할수 있는지를 UX/UI(GUI) 측면에서 바라보고 프로토타입 모델을 설계해 보았다. 지금까지 시각적 경험에 많이 치중해 있었다면, 이제는 데이터를 어떻게 가공하여 사용자에게 UX/UI(GUI) 경험을 제공할 수 있는지가 중요한 시점이다. 제시한 모바일 애플리케이션의 UX/UI(GUI)는 딥러닝(Deep Learning)의 CRNN(Convolution Recurrent Neural Network)과 Auto Encoder GPT-3 (Generative Pretrained Transformer)를 활용하여 학습자의 조음 정도와 상황에 맞게 제공하고자 하였다. 인공지능 알고리즘의 활용은 조음 장애 아동들에게 완성도 높은 학습환경을 제공하여 학습효과를 높일 수 있를 것이다. '개인화된 맞춤형 학습'으로 조음의 완성도를 높여서, 대화에 대한 두려움이나 불편함을 갖지 않길 바란다.
Pathfinding for pedestrians provided by various navigation programs is based on a shortest path search algorithm. There is no big difference in their guide results, which makes the path quality more important. Multiple criteria should be included in the search cost to calculate the path quality, which is called a multi-criteria pathfinding. In this paper we propose a user adaptive pathfinding algorithm in which the cost function for a multi-criteria pathfinding is defined as a weighted sum of multiple criteria and the weights are learned automatically by Perceptron learning. Weight learning is implemented in two ways: short-term weight learning that reflects weight changes in real time as the user moves and long-term weight learning that updates the weights by the average value of the entire path after completing the movement. We use the weight update method with momentum for long-term weight learning, so that learning speed is improved and the learned weight can be stabilized. The proposed method is implemented as an app and is applied to various movement situations. The results show that customized pathfinding based on user preference can be obtained.
본 연구는 21세기에 필요한 핵심적인 학습 능력을 연구하고 미래사회 국가 발전에 필요한 핵심 인력을 양성하는데 있다. '21세기 학습 능력 프로젝트'는 학습자의 학습 능력과 개인 사회적으로 가치 있는 주제를 중심으로 기존 지식과 학문을 다학문적, 통합적으로 접근하는 것이다. 국내에서도 학습 능력 배양을 위한 다양한 교과 간 통합 교육과정의 시도가 있었으나 각 교과의 내용과 특성의 차이를 충분히 이해하여 효과적으로 교수할 수 있는 교사가 부족하고 현장에서 쉽게 적용하는데 어려움이 있다. 이에 본 연구는 21세기에 필요한 학습 능력 신장을 위해 학문의 지식을 통합하는 다학문적 맞춤형 교육과정을 개발하고 이를 효율적으로 지원하기 위해 교육과정 실태를 분석 연구하고 그 결과로 초 중등학교에 적용할 수 있는 다학문 맞춤형 학문 통합 모형을 제안한다.
This research points out the necessity of customized communication education for engineering students in the era of the Fourth Industrial Revolution. This paper also points out such problems of current communication education as presentation and discussion-focused 'Public Speech' exercises, absence of interests about social issues, and lack of interactive communication learning. In general, as the characteristics of their major education, engineering students are not aggressive in self-questioning and active communication rather than their sensitive reaction to the changes of the new era. Considering these characteristics of engineering students, this research emphasizes that future communication education should be deployed from the major-focused thinking to the development of convergent thinking, from the problem-solving to the problem-finding, and from the contentious thinking to the cooperative thinking. In addition, as a class design reflecting future trends, this research emphasizes, firstly the development of cooperative communication education model, secondly active utilization of SMART technology, and lastly the importance of customized-coaching for each student considering their own characteristics and requirements.
This study analyzes the trends of recommendation services for customized fashion styles in relation to artificial intelligence. To achieve this goal, the study examined filtering technologies of collaborative, content based, and deep-learning as well as analyzed the characteristics of recommendation services in the users' purchasing process. The results of this study showed that the most universal recommendation technology is collaborative filtering. Collaborative filtering was shown to allow intuitive searching of similar fashion styles in the cognition of need stage, and appeared to be useful in comparing prices but not suitable for innovative customers who pursue early trends. Second, content based filtering was shown to utilize body shape as a key personal profile item in order to reduce the possibility of failure when selecting sizes online, which has limits to being able to wear the product beforehand. Third, fashion style recommendations applied with deep-learning intervene with all user processes of buying products online that was also confirmed to penetrate into the creative area of image tag services, virtual reality services, clothes wearing fit evaluation services, and individually customized design services.
The purpose of this study supports the establishment of national e-learning policy by analyzing e-learning status and current status of higher education. Enhance the competitiveness of higher education through sharing information between universities. And to improve e-learning quality management. We surveyed the current status of e-learning in 341 universities and questionnaires about e-learning content, e-learning application form, e-learning platform status was surveyed through each school's learning management system. As a result, the infrastructure of e-learning, the rate of platforms secured, and the contents are increasing gradually each year; however, still, not all students can receive the services equally. Dedicated servers and learning management systems were secured by more than 70% of general universities. In the current development status of e-learning content, multimedia, animation, and text forms are gradually decreasing, but video contents are increasing every year. Most of the online contents were used in the e-learning contents by application type, and blended learning, flipped learning, and mooc is not yet actively used since they are still in the beginning stage. Learning analysis techniques should be supported in order to easily use online learning contents such as flipped learning and mooc. We suggest that the effectiveness of e-learning should be measured and the current state of learning analysis for customized learning should be done. This study aims to contribute to the improvement of competitiveness of higher education by sharing information about e-learning among universities as a basis for improvement of e-learning policy. Future tasks are to improve the customized learning environment by adding whether the system environment for learning analysis is provided at the time of the survey.
웹 2.0 기술의 발전에 따라 사용자가 임의로 서비스 공간을 재구성할 수 있는 개인화 서비스의 수요가 증가하고 있다. 이러닝 분야에서도 점차 개인화 서비스를 적용하여 사용자에게 학습 공간의 재구성을 위한 다양한 기능들이 제공되고 있다. 그러나 기존의 개인화 서비스인 컴포넌트 단위의 레이아웃 재배치는 학습자에게 제한된 요소의 변경만을 허용하기 때문에 세부적인 구성 변경이 이루어질 수 없다. 또한 이러한 재배치 정보를 다른 용도로 활용하지 못하고 있다. 본 논문에서는 학습 공간의 컨트롤 단위 재구성을 위한 e-Space Manager와 동적 컨트롤 배치 기법을 제안하고 이를 통해 사용자가 배치하는 컨트롤이 콘텐츠의 특성에 최적화되어 구성됨을 확인한다. 제안하는 컨트롤 배치 기법은 사용자가 학습 공간의 구성을 컨트롤 단위로 조정할 수 있다는 장점이 있다. 이는 콘텐츠의 배치뿐만 아니라 시스템 개발자가 허용한 범위 내에서 컨트롤의 변경을 통해 콘텐츠의 입 출력 형태를 학습자가 임의로 구성할 수 있게 된다. 그리고 컨트롤 배치를 통해 생성되는 재구성 정보와 사용 기록을 바탕으로 사용자 선호도에 따른 컴피턴시 모델에 사용될 수 있는 자료를 생성한다.
본 연구의 목적은 학습 빅데이터 분석을 통해 추천 알고리즘을 스스로 고도화하는 머신러닝 추천모듈이 적용된 개인 맞춤형 학습 플랫폼이 학생들의 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도에 미치는 영향과 이들 사이의 구조적 관계를 검증하는 것이다. 연구 결과 개인 맞춤형 학습은 학생들의 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도에 대해 긍정적인 영향을 미치고 있었다. 또한, 맞춤형 학습과 수학에 대한 태도와 수학학업성취도의 관계에서 학습시간과 자기주도적 학습능력의 매개효과가 유의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.