• Title/Summary/Keyword: curvature functional

Search Result 71, Processing Time 0.029 seconds

Effects of Korean Medicine Treatment on a Patient with Functional Scoliosis with an Abnormal Gait Pattern After Hip Injury: A Case Report

  • Gi, Yu-Mi;Kim, Tae-Gyu;Jo, Hoo-In;Choi, Jong-Ho;Park, Eun-Young;Lee, Soo-Kyung;Lee, June-Haeng;Kim, Min-Kyu;Lee, KeunJae;Yu, Ok-Cheol
    • Journal of Acupuncture Research
    • /
    • v.36 no.4
    • /
    • pp.282-285
    • /
    • 2019
  • Scoliosis is a 3-dimensional spinal deformity defined as lateral curvature of the spine in the coronal plane of more than $10^{\circ}$. This study describes a case of functional scoliosis after hip injury. In this case, the patient fell whilst inline skating (June 2015) causing severe tilting of her spine, and left hip pain. She received outpatient treatment from July 14, 2015 to December 28, 2015. For approximately 5 months, acupuncture therapy was performed to relax the tension in both hips, Chuna therapy, and foot orthosis were applied to reduce the body's imbalance. Based on X-ray images, the Cobb angle had decreased from $14.73^{\circ}$ (pretreatment) to $1.90^{\circ}$ (posttreatment). This case report suggested that Korean medicine treatment could be an effective therapeutic choice for functional scoliosis.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

An Ergonomic Shape Design for Automotive Push-Return Switches

  • Choi, Daewon;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-21
    • /
    • 2017
  • Objective: The objective of this study is to understand the effect of angle and curvature of push-return switches, which are external factors in the operation environment inside the cars, on the feel of operation and to propose optimum alternatives. Background: Customers' needs for products are changing from functional and performance aspects to customer-led type where customers can reflect on their needs on the products. The operation inside cars is executed by HMI. The push-return switch is utilized as the most intuitive mode of HMI; therefore, this push-return switch, which is widely used, has to be developed by assessing the preference and satisfaction of the customer. Method: The angle and curvatures, which are external factors that affect the feel of operation, are drawn through surveying the preceding research literatures. The stages to construct alternatives in experiments are as follows: (1) the tactile switch is replaced after dismantling the switch assembly to evaluate the internal characteristics proposed by preceding researches, (2) a drawing is prepared by using a design software, is printed using 3D printer, and then it is attached on the switch assembly, and (3) evaluation for satisfaction of operation is carried out by using a driving simulator. Results: Both the angle and curvature that are external factors of switch significantly affect the feel of operation. However, interaction between the two factors is found insignificant. Therefore, an optimum alternative is proposed considering the experimental outcomes. Conclusion: This study evaluates the satisfaction in operation that affects the feel of operation environment inside the cars. Based on the study results, a guideline for switch design in the center fascia is proposed. Application: This study is expected to be used as basic data for designing automotive switches, as well as switches in the industries similar with the operation environments of cars.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

The Effects of Changes In Body Composition Through High Intensity Circuit Training On Spine Curvature And Low Back Pain Among Middle-Aged Men With Abdominal Obesity (고강도서키트트레이닝에 의한 신체조성의 변화가 복부비만 중년남성의 척추만곡도와 요부통증에 미치는 영향)

  • Kim, Chae-Won;Kim, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.346-356
    • /
    • 2018
  • Overweight and abdominal obesity caused by sedentary lifestyle may induce deconditioned and atrophied extensor musculature of the lumbar spine and be a potential risk factor for low back pain (LBP). Therefore, this study was conducted to evaluate the validity of high intensity circuit training (HICT) on weight loss and subsequent alleviation of spine curvature (SC) and visual analog scale (VAS) among middle aged men with abdominal obesity. The training program (1 exercise session for 30 minutes, three times a week for 12 weeks) consisted of 12 different functional exercises based on core strengthening multiple joint circuit training. Portions of the obesity index related to body composition were positively changed, which improved the angles of thoracic kyposis and lumbar lordosis, which appeared to effectively reduce lower back pain. Taken together, HICT specifically designed for LBP effectively decreased obesity related body composition and was superior to other treatments for decreasing aggravation of the spine curvature and LBP caused by abdominal obesity; however, weight loss should be the primary treatment target for LBP patients.

Correlation of Radiographic and Patient Assessment of Spine Following Correction of Nonstructural Component in Juvenile Idiopathic Scoliosis

  • Lee, Jin Gyeong;Yun, Young Cheol;Jo, Won Jae;Seog, Tae Yong;Yoon, Yong-Soon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.863-871
    • /
    • 2018
  • Objective To evaluate the association between progression of curvature of scoliosis, and correction for functional component in patients with juvenile idiopathic scoliosis (JIS). Methods We retrospectively reviewed medical data of patients prescribed custom molded foot orthosis (FO) to correct inequality of RCSPA (resting calcaneal stance position angle), and chose 52 patients (26 females, 26 males) with Cobb angle ${\geq}10^{\circ}$ in radiology and uneven pelvic level at iliac crest by different RCSPA (${\geq}3^{\circ}$) as a factor of functional scoliosis. They had different hump angle ${\geq}5^{\circ}$ in forward bending test, for idiopathic scoliosis component. Their mean age and mean period of wearing FO were $79.5{\pm}10.6months$ and $18.6{\pm}0.70months$. Results Cobb angle was reduced from $22.03^{\circ}{\pm}4.39^{\circ}$ initially to $18.86^{\circ}{\pm}7.53^{\circ}$ after wearing FO. Pelvis height difference and RCSPA difference, were reduced from $1.07{\pm}0.25cm$ initially to $0.60{\pm}0.36$, and from $4.25^{\circ}{\pm}0.71^{\circ}$ initially to $1.71^{\circ}{\pm}0.75^{\circ}$ (p<0.01). Cobb angle improved most in 9 months. However, there was no significant improvement for those with more than $25^{\circ}$ of Cobb angle initially. Mean Cobb angle improved in all age groups, but patients less than 6 years had clinically significant improvement of more than $5^{\circ}$. Conclusion JIS can have functional components, which should be identified and managed. Foot orthosis is useful in correcting functional factors, in the case of pelvic inequality caused by different RCSPA, for patients with juvenile idiopathic scoliosis.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

Three Dimensional CERES Plot in Generalized Linear Models (일반화선형모형에서의 3차원 CERES그림)

  • Kahng, Myung-Wook;Kim, Bu-Yong;Jeon, Jin-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.169-176
    • /
    • 2008
  • We explore the structure and usefulness of three dimensional CERES plot as a basic tool for dealing with curvature as a function of the new predictors in generalized linear models. If predictors have nonlinear effects and there are nonlinear relationships among the predictors, the partial residual plot is not able to display the correct functional form of the predictors. Unlike this plots, the CERES plot can show the correct form. This is illustrated by simulated data.

Time-Dependent Differential Equation of PSC Flexural Member with Constant Eccentricity (직선배치 긴장재를 갖는 PSC 휨 부재의 시간종속적 지배미분방정식)

  • 강병수;김택중;조용덕;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.303-308
    • /
    • 2002
  • A governing differential equation (GDE) of PSC flexural member with constant eccentricity considering the long-term losses including concrete creep, shrinkage, and PS steel relaxation is derived based on the two approaches. The first approach utilizes the force and moment equilibrium equations derived based on the geometry of strains of the uniform and curvature strains while the second one utilizes the principle of minimum total potential energy formulation. The identity of the two GDE's is verified by comparing the coefficients consisting of the GDE's. The boundary conditions resulting from the functional analysis of the variational calculus are investigated. Rayleigh-Ritz method provides a way to get the explicit form of the continuous deflection function in which the total potential energy is minimized with respect to the unknown coefficients consisting of the trial functions. As a closure, the analytically calculated results are compared with the experiments and show good agreements.

  • PDF

A Self-contained Wall Climbing Robot with Closed Link Mechanism

  • Park, Hyoukryeol;Park, Jaejun;Taehun Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.573-581
    • /
    • 2004
  • A self-contained wall climbing robot, called MRWALLSPECT (Multi-functional Robot for WALL inSPECTion) II, is developed. It is designed for scanning external surfaces of gas or oil tanks with small curvature in order to find defects. The robot contains all the components for navigation in itself without any external tether cable. Although it takes the basic structure of the sliding body mechanism, the robot has its original characteristic features in the kinematic design with closed link mechanism, which is enabled by adopting a simple and robust gait pattern mimicking a biological system. By employing the proposed link mechanism, the number of actuators is reduced and high force-to-weight ratio is achieved. This paper describes its mechanism design and the overall features including hardware and software components. Also, the preliminary results of experiments are given for evaluating its performances.