• Title/Summary/Keyword: curvature equation

Search Result 264, Processing Time 0.024 seconds

THE ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS AND PSEUDOCONVEXITY OF GENERAL ORDER IN KÄHLER MANIFOLDS

  • Saber, Sayed
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1211-1223
    • /
    • 2016
  • Let M be an n-dimensional $K{\ddot{a}}hler$ manifold with positive holomorphic bisectional curvature and let ${\Omega}{\Subset}M$ be a pseudoconvex domain of order $n-q$, $1{\leq}q{\leq}n$, with $C^2$ smooth boundary. Then, we study the (weighted) $\bar{\partial}$-equation with support conditions in ${\Omega}$ and the closed range property of ${\bar{\partial}}$ on ${\Omega}$. Applications to the ${\bar{\partial}}$-closed extensions from the boundary are given. In particular, for q = 1, we prove that there exists a number ${\ell}_0$ > 0 such that the ${\bar{\partial}}$-Neumann problem and the Bergman projection are regular in the Sobolev space $W^{\ell}({\Omega})$ for ${\ell}$ < ${\ell}_0$.

Applications of Disturbed State Concept for the dynamic behaviors of fully saturated soils (포화사질토의 동적거동규명을 위한 교란상태개념의 이용)

  • 최재순;박근보;서경범;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-147
    • /
    • 2003
  • There are many problems in the prediction of soil dynamic behaviors because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical methods based on the dynamic constitutive model have been proposed but the model hardly predict the excess pore water pressure directly. In this study, the verification on the disturbed state concept (DSC) model, proposed by Dr, Desai was performed. Some laboratory tests such as conventional triaxial tests and cyclic triaxial tests were carried out to determine DSC Parameters and then disturbance values are determined by the proposed equation. Through this verification, it is proved that the disturbed state concept can express reliably the soil dynamic characteristics such as excess pore water pressure and strain softening behavior. It is also found that the critical disturbance which is determined at the minimum curvature of disturbance function can be a the specific index.

  • PDF

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

AREA PROPERTIES ASSOCIATED WITH STRICTLY CONVEX CURVES

  • Bang, Shin-Ok;Kim, Dong-Soo;Kim, Incheon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.407-417
    • /
    • 2022
  • Archimedes proved that for a point P on a parabola X and a chord AB of X parallel to the tangent of X at P, the area of the region bounded by the parabola X and the chord AB is four thirds of the area of the triangle ∆ABP. This property was proved to be a characteristic of parabolas, so called the Archimedean characterization of parabolas. In this article, we study strictly convex curves in the plane ℝ2. As a result, first using a functional equation we establish a characterization theorem for quadrics. With the help of this characterization we give another proof of the Archimedean characterization of parabolas. Finally, we present two related conditions which are necessary and sufficient for a strictly convex curve in the plane to be an open arc of a parabola.

Development of Crown Fire Propagation Probability Equation Using Logistic Regression Model (로지스틱 회귀모형을 이용한 수관화확산확률식의 개발)

  • Ryu, Gye-Sun;Lee, Byung-Doo;Won, Myoung-Soo;Kim, Kyong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Crown fire, the main propagation type of large forest fire, has caused extreme damage with the fast spread rate and the high flame intensity. In this paper, we developed the probability equation to predict the crown fires using the spatial features of topography, fuel and weather in damaged area by crown fire. Eighteen variables were collected and then classified by burn severity utilizing geographic information system and remote sensing. Crown fire ratio and logistic regression model were used to select related variables and to estimate the weights for the classes of each variables. As a results, elevation, forest type, elevation relief ratio, folded aspect, plan curvature and solar insolation were related to the crown fire propagation. The crown fire propagation probability equation may can be applied to the priority setting of fuel treatment and suppression resources allocation for forest fire.

Explicit Equations of Normal Depth for Drainage Pipes (하수관 등류수심 양해법 산정식)

  • Yoo, Dong-Hoon;Rho, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.527-535
    • /
    • 2005
  • The computation of normal depth is very important for the design of channel and the analysis of water flow. Drainage pipe generally has the shape of curvature like circular or U-type, which is different from artificial triangular or rectangular channel. In this case, the computation of normal depth or the derivation of equations is very difficult because the change of hydraulic radius and area versus depth is not simple. If the ratio of the area to the diameter, or the hydraulic radius to the diameter of pipe is expressed as the water depth to the diameter of pipe by power law, however, the process of computing normal depth becomes relatively simple, and explicit equations can be obtained. In the present study, developed are the explicit normal depth equations for circular and U-type pipes, and the normal depth equation associated with Hagen (Manning) equation and friction factor equation of smooth turbulent flow by power law is also proposed because of its wide usage in engineering design.

A Study on the Curvature Ratio and Coefficient in Channel Bend (유로만곡부(流路彎曲部)의 곡율비(曲率比)와 곡율계수(曲率係數)에 관한 연구(硏究))

  • Chung, Yong Tai;Lee, Jin Eun;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • Based on the momentum equation for the flow in a stream bend, the force per unit area which the flow exerts on the outer of a bend is directly proportional to a certain curvature coefficient, $C{\alpha}$. This coefficient is dependent on the ratio of bend radius(R) to flow width(W), as well as on the coefficient of dynamic bedload friction, $tan{\alpha}$. According to the results of the data analysis for the downstrream at the Han river, the range of R/w values is between 2.0 and 4.0. Exploring the variations of $C{\alpha}$ with R/w values a functional relationship which, for the known values of $tan{\alpha}$, shows maximum values of $C{\alpha}$ for R/w values between 2.21 and 4.42 in 1963, while in 1981 its values lied between 1.93 and 3.54.

  • PDF

Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings (탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가)

  • Kim, Kyungsik;Lee, Heejeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Horizontally curved bridges are subjected to torsional loads by their vertical dead loads only as well as eccentric loads, which cause negative reactions at supports. In this paper, effects of bridge curvature on vertical reactions at supports are investigated for 48.8 m length simple span steel box girder bridges with elastomeric bearings by varying curvature angle from 0.49 to 1.35 rad. In order to expect magnitude and direction of reactions including possibility of negative reactions, reaction evaluation equations have been analytically developed by separating a superstructure of curved bridge into independent components. Concrete slabs and bottom flanges in steel box section are assumed geometrical annular sectors in area dimension, and top flanges and webs that have very narrow projected areas are assumed geometrical arcs in line dimension. Proposed equations have relatively simple forms and prediction values are on very good agreement with those from finite element analyses by difference of 1% order.

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams (하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.283-290
    • /
    • 2015
  • This paper proposes a method for predicting flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams. It includes an experimental test framework and associated numerical analyses. The experimental program includes flexural test results of hybrid steel fiber-reinforced ultra-high strength concrete beams with steel fiber content of 1.5% by volume. Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack mouth opening displacement relationship is considered. The comparison of moment-curvature curves of the numerical analysis results with the test results shows a reasonable agreement. Therefore, the numerical results confirms that good prediction of flexural behavior of steel fiber-reinforced ultra high strength concrete beams can be achieved by employing the proposed method.