연결 정보가 없는 포인트 데이타가 주어졌을 때, 본 논문은 MLS(moving least-squares) 근사화 기법을 이용하여 포인트 데이타에 대해 근사화된 표면을 생성한다. 근사화된 표면에서의 각 포인트에 대해 지역적인 곡률과 곡률 미분 값을 측정 한 후, 딜러니 삼각화(Delaunay tessellation)를 통해 이웃간의 정보를 생성하게 되고, 연결된 포인트들 간의 제로-클로싱(zero-crossing)을 측정하여 특징 포인트들을 추출하고, 곡률 방향으로 추출 된 포인트들을 연결한다. 본 방법은 기존의 메쉬 데이타에서 특징 선을 찾는 방법과 비슷한 복잡도를 갖는다. 몇 개의 포인트-샘플 된 모델에 대해 특징 선 추출을 수행하며, 곡률의 크기에 따라 특징선의 두께를 조절하고 포인트-스플릿팅 방법에 의해 렌더링 한다.
이 논문은 구조해석에서 수치미분의 적용성에 관한 연구이다. 구조물 선형식의 미분은 구조물의 거동해석에서 반드시 필요한 수학적 계산 중의 하나이다. 아치와 같이 구조물의 선형식이 곡선인 경우에 미분식의 산출은 많은 시간과 노력을 필요로 한다. 이 연구에서는 구조해석에서 수치미분의 적용성을 아치의 자유진동 문제를 통하여 검증하였다. 전진 5차다항식으로부터 아치 곡률항의 미분값을 계산하고 이를 대수적으로 구한 곡률항과 비교하였다 이렇게 얻은 곡률항을 이용하여 최종적으로 산출한 아치의 고유진동수는 문헌해와 아주 우수하게 근접하였다. 이러한 결과로부터 구조해석에서 수치미분의 적용성과 그 결과의 정확성을 입증할 수 있었다.
Production of green pepper has increased for ten years in Korea, as customer's preference of a pepper tuned to fiesta one. This study was conducted to develop an on-line fading algorithm of green pepper using machine vision and aimed to develop the automatic on-line grading and sorting system. The machine vision system was composed of a professive scan R7B CCD camera, a frame grabber and sets of 3-wave fluorescent lamps. The length and curvature, which were main quality factors of a green pepper were measured while removing the stem region. The first derivative of the thickness profile was used to remove the stem area of the segmented image of the pepper. A new boundary was generated after the stem was removed and a baseline of a pepper which was used for the curvature determination was also generated. The developed algorithm showed that the accuracy of the size measurement was 86.6% and the accuracy of the bent was 91.9%. Processing time spent far grading was around 0.17 sec per pepper.
Kim, Byung Hak;Lee, Sang Deok;Choi, Jin Hyuk;Lee, Young Ok
대한수학회보
/
제50권5호
/
pp.1683-1691
/
2013
In this paper, we obtain the criteria that the Riemannian manifold B is Einstein or a gradient Ricci soliton from the information of the second derivative of $f$ in the warped product space $R{\times}_fB$ with gradient Ricci solitons. Moreover, we construct new examples of non-Einstein gradient Ricci soliton spaces with an Einstein or non-Einstein gradient Ricci soliton leaf using our main theorems. Finally we also get analogous criteria for the Lorentzian version.
In this paper we present geometrically exact Kirchhoff's initially curved planar beam model. The theoretical formulation of the proposed model is based upon Reissner's geometrically exact beam formulation presented in classical works as a starting point, but with imposed Kirchhoff's constraint in the rotated strain measure. Such constraint imposes that shear deformation becomes negligible, and as a result, curvature depends on the second derivative of displacements. The constitutive law is plasticity with linear hardening, defined separately for axial and bending response. We construct discrete approximation by using Hermite's polynomials, for both position vector and displacements, and present the finite element arrays and details of numerical implementation. Several numerical examples are presented in order to illustrate an excellent performance of the proposed beam model.
An inflection point on a curve is a point where the curvature vanishes. An inflection point is useful for various geometric operations such as the approximation of curves and intersection points between curves or curve approximations. An inflection point on planar Bezier curves can be easily detected using a hodograph and a derivative of hodograph, since the closed from of hodograph is known. In the case of rational Bezier curves, for the detection of inflection point, it is needed to use the first and the second derivatives have higher degree and are more complex than those of non-rational Bezier curvet. This paper presents three methods to detect inflection points of rational Bezier curves. Since the algorithms avoid explicit derivations of the first and the second derivatives of rational Bezier curve to generate polynomial of relatively lower degree, they turn out to be rather efficient. Presented also in this paper is the theoretical analysis of the performances of the algorithms as well as the experimental result.
A small-deflected beam can be easily solved by assuming a linear system. But a large-deflected beam can not be solved by superposition of the displacements, because the system is nonlinear. The solutions for the large-deflection problems can not be obtained directly from elementary beam theory for linearized systems since the basic assumptions are no longer valid. Specifically, elementary theory neglects the square of the first derivative in the beam curvature formula and provides no correction for the shortening of the moment-arm cause by transverse deflection. These two effects must be considered to analyze the large deflection. Through the correction of deflected geometry and internal axial force, the proposed new approach is developed from the linearized beam theory. The solutions from the proposed approach are compared with exact solutions.
금산지역의 흑색셰일형 우라늄광상에 대하여 항공 자력 및 방사능 탐사를 수행하였다. 각 자료의 암상분석과 선구조 분석에 의한 전반적인 지질 및 구조지질적 특성을 살펴보고 이에 기반한 우라늄 광화대의 특성화를 시도하였다. 자극화변환과 하향연속 이상도에서 우라늄광상을 배태하고 있는 흑색 및 암회색 점판암대의 뚜렷한 양의 이상을 인지함으로써 자력탐사의 적용성을 확인하였다. 이차미분 및 곡률을 이용한 선구조 분석을 통해 회색 혼펠스대와 흑색 점판암대를 대표하는 선구조를 도출하고 우라늄 광화대의 추가 부존 가능영역을 추정하였다. 이에 대한 우라늄광 배태여부는 방사능 총이상 및 우라늄 이상도에서 최종 확인하였다. 결론적으로 열변성기원의 우라늄광화대는 국부적인 반면, 흑색셰일형 광화대는 조사지역 전체에 북동-남서방향으로 연속되어 있음을 확인하였다. 또한 우라늄 광화대는 방사능 총이상의 선구조 분석을 통해 단층과 교차하는 곳은 단절되는 전형적인 구조지질적 특징을 보여주었다. 이상의 고찰로부터 항공 자력 및 방사능 탐사는 상호 보완적이며 따라서 병행 수행하는 것이 자료분석 및 해석에 매우 효과적임을 확인하였다.
확장 B-스플라인 기저함수(extended B-spline basis functions)을 이용한 레벨셋 기반의 위상 형상 최적설계 기법을 정상 상태의 열전도 문제에 대하여 개발하였다. 본 해석법은 레벨셋으로 결정된 영역 안쪽만 고려하여 해석을 수행하게 되므로 열전달 문제에서 생길 수 있는 영역 바깥부분 영향을 제거할 수 있다. 설계민감도 해석으로부터 결정되는 법선속도를 활용하여 헤밀턴-자코비 방정식의 해를 구하게 되며, 주어진 체적조건 하에서 열 컴플라이언스(thermal compliance)가 최소가 되는 방향으로 최적의 형상을 결정할 수 있다. 형상 설계민감도를 정확하게 얻기 위해서는 레벨셋 함수와 B-스플라인 함수를 이용하여 수직 단위 벡터와 형상의 곡률을 정확히 결정하며, 위상 설계민감도를 통해 최적화과정 동안 필요한 위치와 시점에서 위상의 변화를 주는 홀을 쉽게 생성할 수 있다.
이 논문은 곡선부재의 구조해석에서 수치미분의 적용에 관한 연구이다. 구조물 선형식의 미분은 구조물의 거동해석에서 반드시 필요한 수학적 계산 중의 하나이다. 구조물의 선형이 곡선인 경우에 미분식의 산출은 많은 노력과 시간을 필요로 한다. 이 연구에서는 곡선부재의 구조해석에서 미분구적(DQ)을 이용한 수치미분의 적용성을 검증하기 위하여 아치의 자유진동 문제를 택하였다. 미분구적을 이용하여 아치 곡률항의 미분값을 계산하고 이를 대수적으로 구한 정학한 값과 비교하였다. 이 연구에서 얻어진 곡률항을 이용하여 최종적으로 산출한 아치의 고유진동수는 문헌해와 매우 우수하게 근접하였다. 이러한 결과로부터 구조해석에서 미분구적을 이용한 수치미분의 적용성을 입증할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.