• Title/Summary/Keyword: curse of dimensionality

Search Result 58, Processing Time 0.022 seconds

Time optimal Control via Neural Networks (신경회로망을 이용한 시간최적 제어)

  • 윤중선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.372-377
    • /
    • 1996
  • A time-optimal control law for quick, strongly nonlinear systems like revolute robots has been developed and demonstrated. This procedure involves the utilization of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the known and unknown systems with constrained inputs and/or states. The nature of neural networks as a parallel processor would circumvent the problem of "curse of dimensionality".ity".uot;.

  • PDF

Time-optimal control for motors via neural networks (신경회로망을 이용한 모터의 시간최적 제어)

  • 최원수;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1169-1172
    • /
    • 1996
  • A time-optimal control law for quick, strongly nonlinear systems has been developed and demonstrated. This procedure involves the utilization of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the known and unknown systems with constrained inputs and/or states. The nature of neural networks as a parallel processor would circumvent the problem of "curse of dimensionality". The control law has been demonstrated for a velocity input type motor identified by a genetic algorithm called GENOCOP.

  • PDF

Approximate Calculation of Order Fill Rate under Purchase Dependence (구매종속성을 고려한 주문충족률의 근사적 계산)

  • Park, Changkyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.137-146
    • /
    • 2017
  • For the competitive business environment under purchase dependence, this paper proposes a new approximate calculation of order fill rate which is a probability of satisfying a customer order immediately using the existing inventory. Purchase dependence is different to demand dependence. Purchase dependence treats the purchase behavior of customers, while demand dependence considers demand correlation between items, between regions, or over time. Purchase dependence can be observed in such areas as marketing, manufacturing systems, and distribution systems. Traditional computational methods have a difficulty of the curse of dimensionality for the large cases, when deriving the stationary joint distribution which is utilized to calculate the order fill rate. In order to escape the curse of dimensionality and protect the solution from diverging for the large cases, we develop a greedy iterative search algorithm based on the Gauss-Seidel method. We show that the greedy iterative search algorithm is a dependable algorithm to derive the stationary joint distribution of on-hand inventories in the retailer system by conducting a comparison analysis of a greedy iterative search algorithm with the simulation. In addition, we present some managerial insights such as : (1) The upper bound of order fill rate can be calculated by the one-item pure system, while the lower bound can be provided by the pure system that consists of all items; (2) As the degree of purchase dependence declines while other conditions remain same, it is observed that the difference between the lower and upper bounds reduces, the order fill rate increases, and the order fill rate gets closer to the upper bound.

A Cell-based Clustering Method for Large High-dimensional Data in Data Mining (데이타마이닝에서 고차원 대용량 데이타를 위한 셀-기반 클러스터 링 방법)

  • Jin, Du-Seok;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • Recently, data mining applications require a large amount of high-dimensional data Most algorithms for data mining applications however, do not work efficiently of high-dimensional large data because of the so-called curse of dimensionality[1] and the limitation of available memory. To overcome these problems, this paper proposes a new cell-based clustering which is more efficient than the existing algorithms for high-dimensional large data, Our clustering method provides a cell construction algorithm for dealing with high-dimensional large data and a index structure based of filtering .We do performance comparison of our cell-based clustering method with the CLIQUE method in terms of clustering time, precision, and retrieval time. Finally, the results from our experiment show that our cell-based clustering method outperform the CLIQUE method.

  • PDF

Development of Traffic State Classification Technique (교통상황 분류를 위한 클러스터링 기법 개발)

  • Woojin Kang;Youngho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Traffic state classification is crucial for time-of-day (TOD) traffic signal control. This paper proposed a traffic state classification technique applying Deep-Embedded Clustering (DEC) method that uses a high dimensional traffic data observed at all signalized intersections in a traffic signal control sub area (SA). So far, signal timing plan has been determined based on the traffic data observed at the critical intersection in SA. The current method has a limitation that it cannot consider a comprehensive traffic situation in SA. The proposed method alleviates the curse of dimensionality and turns out to overcome the shortcomings of the current signal timing plan.

Physical Database Design for DFT-Based Multidimensional Indexes in Time-Series Databases (시계열 데이터베이스에서 DFT-기반 다차원 인덱스를 위한 물리적 데이터베이스 설계)

  • Kim, Sang-Wook;Kim, Jin-Ho;Han, Byung-ll
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1505-1514
    • /
    • 2004
  • Sequence matching in time-series databases is an operation that finds the data sequences whose changing patterns are similar to that of a query sequence. Typically, sequence matching hires a multi-dimensional index for its efficient processing. In order to alleviate the dimensionality curse problem of the multi-dimensional index in high-dimensional cases, the previous methods for sequence matching apply the Discrete Fourier Transform(DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes of the multi-dimensional index. This paper first points out the problems in such simple methods taking the firs two or three coefficients, and proposes a novel solution to construct the optimal multi -dimensional index. The proposed method analyzes the characteristics of a target database, and identifies the organizing attributes having the best discrimination power based on the analysis. It also determines the optimal number of organizing attributes for efficient sequence matching by using a cost model. To show the effectiveness of the proposed method, we perform a series of experiments. The results show that the Proposed method outperforms the previous ones significantly.

  • PDF

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.

An Efficient Bitmap Indexing Method for Multimedia Data Reflecting the Characteristics of MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 특성을 반영한 효율적인 멀티미디어 데이타 비트맵 인덱싱 방법)

  • Jeong Jinguk;Nang Jongho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2005
  • Recently, the MPEG-7 standard a multimedia content description standard is wide]y used for content based image/video retrieval systems. However, since the descriptors standardized in MPEG-7 are usually multidimensional and the problem called 'Curse of dimensionality', previously proposed indexing methods(for example, multidimensional indexing methods, dimensionality reduction methods, filtering methods, and so on) could not be used to effectively index the multimedia database represented in MPEG-7. This paper proposes an efficient multimedia data indexing mechanism reflecting the characteristics of MPEG-7 visual descriptors. In the proposed indexing mechanism, the descriptor is transformed into a histogram of some attributes. By representing the value of each bin as a binary number, the histogram itself that is a visual descriptor for the object in multimedia database could be represented as a bit string. Bit strings for all objects in multimedia database are collected to form an index file, bitmap index, in the proposed indexing mechanism. By XORing them with the descriptors for query object, the candidate solutions for similarity search could be computed easily and they are checked again with query object to precisely compute the similarity with exact metric such as Ll-norm. These indexing and searching mechanisms are efficient because the filtering process is performed by simple bit-operation and it reduces the search space dramatically. Upon experimental results with more than 100,000 real images, the proposed indexing and searching mechanisms are about IS times faster than the sequential searching with more than 90% accuracy.

Cancer-Subtype Classification Based on Gene Expression Data (유전자 발현 데이터를 이용한 암의 유형 분류 기법)

  • Cho Ji-Hoon;Lee Dongkwon;Lee Min-Young;Lee In-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1172-1180
    • /
    • 2004
  • Recently, the gene expression data, product of high-throughput technology, appeared in earnest and the studies related with it (so-called bioinformatics) occupied an important position in the field of biological and medical research. The microarray is a revolutionary technology which enables us to monitor several thousands of genes simultaneously and thus to gain an insight into the phenomena in the human body (e.g. the mechanism of cancer progression) at the molecular level. To obtain useful information from such gene expression measurements, it is essential to analyze the data with appropriate techniques. However the high-dimensionality of the data can bring about some problems such as curse of dimensionality and singularity problem of matrix computation, and hence makes it difficult to apply conventional data analysis methods. Therefore, the development of method which can effectively treat the data becomes a challenging issue in the field of computational biology. This research focuses on the gene selection and classification for cancer subtype discrimination based on gene expression (microarray) data.

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.