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For the competitive business environment under purchase dependence, this paper proposes a new approximate calculation of 
order fill rate which is a probability of satisfying a customer order immediately using the existing inventory. Purchase dependence 
is different to demand dependence. Purchase dependence treats the purchase behavior of customers, while demand dependence 
considers demand correlation between items, between regions, or over time. Purchase dependence can be observed in such areas 
as marketing, manufacturing systems, and distribution systems. Traditional computational methods have a difficulty of the curse 
of dimensionality for the large cases, when deriving the stationary joint distribution which is utilized to calculate the order fill 
rate. In order to escape the curse of dimensionality and protect the solution from diverging for the large cases, we develop 
a greedy iterative search algorithm based on the Gauss-Seidel method. We show that the greedy iterative search algorithm is 
a dependable algorithm to derive the stationary joint distribution of on-hand inventories in the retailer system by conducting 
a comparison analysis of a greedy iterative search algorithm with the simulation. In addition, we present some managerial insights 
such as : (1) The upper bound of order fill rate can be calculated by the one-item pure system, while the lower bound can 
be provided by the pure system that consists of all items; (2) As the degree of purchase dependence declines while other conditions 
remain same, it is observed that the difference between the lower and upper bounds reduces, the order fill rate increases, and 
the order fill rate gets closer to the upper bound. 
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1. Introduction1)

For companies in today’s competitive marketplace, order 
fulfillment performance has become more and more imper-
ative in order to respond quickly to customer needs [14, 20]. 
This paper considers the calculation of order fill rate when 
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a customer order is composed of several items and the cus-
tomer order is met only if all the items can be deliverable 
at once. The order fill rate is defined as the probability of 
satisfying a customer order immediately using the existing 
inventory.

Song [16] stated the order fill rate as the order-based per-
formance measure. However, most standard inventory mod-
els do not consider connections between items. The models 
assume that each item demand is independent. This case is 
referred as the item-based approach. In the order-based ap-
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proach, the following question is important, because custom-
er order requires several items at the same time: What is 
the probability that a customer order can be met immediately, 
given any safety stock level? 

Park and Seo [13] faced the same question when analyzing 
the inventory of a spare parts distributor for ship engines 
and generators. After investigating the historical purchase- 
order-request (POR) data, Park and Seo [13] identified that 
a many of orders had been cancelled because of the lack 
of a few spare parts. That is, if an order contained at least 
one item that was out of stock, the whole order was can-
celled, even though the other items had large quantities of 
stocks. They demonstrated that over 30% was explained by 
the portion of orders cancelled because of stocked-out parts. 
In most of cases, shipping companies purchase spare parts 
only when all of the spare parts are available immediately, 
because they want to buy all of the spare parts together. 
In this case, if one of the spare parts is out of stock, while 
all of the other parts are in stock, the situation is the same 
as if all items were out of stock. Park and Seo [13] called 
this type of dependence as ‘purchase dependence.’ 

Purchase dependence is different to demand dependence. 
Purchase dependence treats the purchase behavior of custo-
mers, while demand dependence considers demand correla-
tion between items, between regions, or over time. Purchase 
dependence can be observed in such areas as marketing, 
manufacturing systems, and distribution systems. 

This paper proposes a new approximate calculation of or-
der fill rate under purchase dependence. We calculate the 
order fill rate using the stationary joint distribution of on- 
hand inventories. The stationary joint distribution is mod-
elled by a quasi-birth-and-death (QBD) process and it con-
sists of the balance equations and a normalization equation. 
However, traditional computational methods for solving the 
linear equations face with a difficulty of the curse of dime-
nsionality for the large number of equations and unknowns. 
Thus we develop the greedy iterative search algorithm 
(GISA). 

This paper is organized as follows. In the following sec-
tion, we review the related literature. Section 3 explains the 
model that calculates the order fill rate. In Section 4, we 
depict the procedure of GISA. Section 5 conducts the compu-
tational analysis. In Section 6, we finalize this paper by pro-
viding our conclusions.  

2. Literature Review 

Firstly, Song [16] examined the order-based approach. She 
derived an exact solution of the order fill rate for a multi- 
item, multi-product system with backlogging and constant 
lead times. A customer order was composed of several items 
in different amounts. Using a series of convolution of one- 
dimensional distributions, she calculated the order fill rate. 

On the other hand, Song, et al. [17] studied a multi-com-
ponent, multi-product system, where each of the components 
is managed by the make-to-stock and refilled by the ex-
ponential processing machine. They formulated a generalized 
model having both complete backlogging and lost sales as 
a special case. In addition, they differentiated total order 
service and partial order service. The total order service is 
that an order is fulfilled completely or rejected as a whole, 
while the partial order service is that partial fulfilment 
occurs. Iravani et al. [4] and Gao et al. [1] examined a similar 
situation. However, they considered a little different perspec-
tive. Iravani et al. [4] considered customer flexibility. The 
customer flexibility means that customers change some of 
their requested components not in stock. On the other hand, 
Gao et al. [1] considered that each item was refilled by an 
independent unreliable machine. 

One major limitation with the above studies is their inabil-
ity to analyze large systems. Their modelling approaches are 
difficult to calculate, because they require incorporating cor-
relations among demands for different items. Even though 
the matrix-geometric techniques are used by Song et al. [17], 
Iravani et al. [4] and Gao et al. [1], the curse of dimension-
ality is still remained. 

In order to solve a linear system of equations : Ax = b, 
A = (aij) ∈ Rmxm, x, b ∈ Rm, we usually use a well-known 
Gauss-Seidel method. The Gauss-Seidel method is modified 
from the Jacobi method. Thus it needs less iteration to make 
the same degree of accuracy. In order to speed-up the con-
vergence rate, several preconditioned iterative methods have 
been developed. These studies are summarized in <Table 1>. 
However, our linear equations system is not solved by the 
Gauss-Seidel method and several preconditioned iterative 
methods, because these methods diverge.   

3. Model Description 

When purchase dependence exists, we consider a retailer 
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<Table 1> A Summary of Preconditioned Iterative Methods

Research Preconditioner Remark

Milaszewicz  [8] I + C C eliminates the elements of the first column below the diagonal of A.

Gunawardena et al. [2] I + S S transforms the first upper codiagonal to zero.

Usui et al. [18] I + U U is a strictly upper triangular part of-A. 

Kotakemori et al. [7] I +  U  ≥ 1

Kohno et al. [5] I + S   > 1

Kotakemori et al. [6] I + Smax
Smax is constructed by only the largest element at each row of the upper triangular 
part of A.

Hadjidimos et al. [3] I + C

Morimoto et al. [9] I + S + Smax

Noutsos and Tzoumas [12] Generalized
preconditioner Eliminate two or more off-diagonal elements in each row.

Niki et al. [11] I + S + R R is referred to as the nth preconditioner.

Zheng and Miao [21]
I + Smax + R

I + Smax + Rmax Rmax is constructed by the largest element of R.

system that has J different items.  = {1, 2, …, J} is the 
set of all item indices. For any K  ⊆ , let |K | denote the 
number of elements in K. The overall order process is sta-
tionary in time and follows a Poisson process. Each customer 
requests at most one unit of each item but may require sev-
eral items simultaneously. For any K ⊆ , an order is of 
type K if it requires one and only one unit of each item 
in K and 0 units in  - K. Let T = {1, 2, …, |T |} be the 
set of order types (1 ≤ |T | ≤ 2J-1). We assume that the 
probability of type K is constant. Every order type is inde-
pendent each other. This means that the demand process for 
each item follows also a Poisson process. This paper uses 
the same assumptions and notations defined in Song et al. [17].

Orders are satisfied by a First-Come-First-Serve (FCFS) 
basis. When an order comes and a retailer has some items 
in out-of-stock, the order is cancelled. Song et al. [17] called 
this situation as a total order service. Each item is managed 
independently by an base stock policy. Let si be the base 
stock level for item i. This means that if the inventory posi-
tion of item i is less than si, then order up to si at each 
demand epoch. The inventory position is calculated by the 
inventory on hand plus inventory on order. It is assumed 
that item i has an inventory at level si for all i at time 0. 
Then, if the item i is transported to the customer, each de-
mand for item i generates an order for that item. Hence there 
can exist (at most) si outstanding orders of item i. Orders 
for item i are refilled by a supplier i and the lead times 
are distributed exponentially with the rate i. The supplier 
processes the orders on a FCFS basis. 

3.1 The Order Fill Rate

For any i ∈  and K ∈ T, let  be the overall order 
rate, qK be the probability that an order is of type K, 

K 
be the order rate of demand type K (i.e., 

K = qK
), qi be 

the probability that an order requires item i (i.e., qi  = 


  ∈

), and  i be the aggregate demand rate of item i 

(i.e.,  i = qi). 

We denote that 
Ii = the on-hand inventory of item i in steady-state, 0 ≤ 

Ii ≤ si, 
the fill rate of type-K  order is denoted by 
FK = the joint probability that all items in a type-K  order 

are delivered immediately 
   =   ∈

Then, the order fill rate of a retailer system F is obtained 
by 

                    
∈

 
(1)

3.2 The Stationary Joint Distribution 

Due to purchase dependence, a type-K order is cancelled 
if at least one item i (i ∈ K) is out of stock. Since the 
fill rate of type-K order is the joint probability that all items 
in the type-K  order are delivered immediately, the fill rate 
of type-K order is decided by the joint distribution of (Ii : 
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<Figure 1> The Transition Rate Diagram and Balance

Equations

i ∈ K). In this section, we demonstrate how to derive the 
joint distribution of (Ii : i ∈ K).

A stochastic process {(Ii(t) : i ∈ K), t ≥ 0}, is a con-
tinuous-time Markov chain with finite state space {n = (ni : 
i ∈ K)|0 ≤ ni ≤ si, i ∈ K}, where Ii(t) is the inventory 
on hand of item i at time t. There are 

∈

   states. 

A state transition can only take place if a demand or an 
item on order arrives. In other word, with transition rate 

K, 
the state n transits to the state n’ = (n’i : i ∈ K), where  

  
′      ∈       ∈

 
(2)

and with transition rate i (i ∈ K), the state n transits to 
the state n' = (n'i : i ∈ K), where 

  
′′            

 
             (3)

It is easy to see that this Markov chain is irreducible, so 
its stationary distribution exists uniquely [17]. The balance 
equation for each state can be formulated by utilizing equa-
tions (2) and (3). <Figure 1> shows the transition rate diagram 
and balance equations for the retailer system in which the 
type-1 order requires an item 1, the type-2 order requires 
an item 2, and the type-3 order requires both items 1 and 
2. In the equilibrium situation, it should be that the rate of 
leaving any node equals to the rate of entering that node. 
Using the ‘rate in = rate out’ principle, we can make the 
following generalization. 

Let I be a vector of (Ii : i ∈ K) and pI be the equilibrium 
probabilities. Then

∈

  
∈



  
∈

 
 

∈


 

∈

 (4)

where i = 1 for Ii < si or 0 otherwise, K = 1 for ∀Ii 
> 0 (i ∈ K) or 0 otherwise, ei is a unit vector having 1 
at the position of Ii, and pI = 0 for any Ii ∉ [0,si]. 

Then, the stationary joint distribution can be obtained by 
solving the balance equations and a normalization equation. 
In order to solve the linear equations, we can use traditional 
computational algorithms such as Gaussian elimination. How-
ever, the direct approach can face with severe computation 
and space complexities for the large size of problem. Voiding 
the computation and space complexities, Song et al. [17], 

Iravani et al. [4] and Gao et al. [1] used the special structure 
of the QBD process. They obtained a unified, matrix-geo-
metric solution of the stationary joint distribution. On the 
other hand, Ye and Li [19] developed the folding algorithm 
to conduct a steady state analysis of finite QBD process. 
The curse of dimensionality is still remained. Thus we devel-
op the greedy iterative search algorithm to avoid the curse 
of dimensionality. The algorithm utilizes the special structure 
of the QBD process shown in equation (4) and stops the 
solution from diverging by adding the newly invented steps 
into the Gauss-Seidel method.

4. Greedy Iterative Search Algorithm 

A linear equations system is established by the balance 
equations depicted by equation (4) and the normalization 
equation such that Ax = b, A = (aij) ∈ Rmxm, x, b ∈ Rm. 
Here, we say that A is the coefficient matrix, b is the 
right-hand side vector, x is the vector of unknowns (i.e., pI, 
the equilibrium probabilities), and the order m  

∈

  . 

The linear equations system, sometimes, can be large and 
sparse. Then, a serious storage problem can be brought by 
the large number of equations and unknowns. Gaussian elim-
ination is a very accurate, economical, and useful algorithm, 
if possible. But if the order m  is so large and the results 
of Gaussian elimination cannot be stored, it would be better 
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<Figure 2> The Pseudo-Code of GISA

to solve the linear equations system by other ways that never 
change the matrix A and never require storing more than 
a few vectors of length m. For this purpose, iterative methods 
are recommended. 

In this section, we describe the procedure of GISA. We 
begin with an initial solution vector x(0), and generate a se-
quence of solution vectors x(1) → x(2) →⋯ according to the 
algorithm. We hope that as k → ∞, x(k) will converge to the 
exact solution. <Figure 2> shows the pseudo-code of GISA. 
In the initialization step, an initial solution x(0) set up and 
we compute the maximum absolute residual rmax and the 
summation of absolute residual rsum corresponding to x(0). Let 
[y]i be the ith element of vector y.

Then we create the solution vectors x(k) according to the 
following rule. Let xi

(k) denote the ith element of the kth 
iterate solution vector x(k) (i.e., [x(k)]i) and bi the ith element 
of the right-hand side b (i.e., [b]i). The algorithm adjusts 
the ith element of the current solution, in the order i = 1, 
2, …, m, to abolish the ith element of the residual. The sol-
ution is updated immediately if the newly computed element 
xi

(k) is nonnegative, and the newly computed maximum abso-

lute residual or the newly computed summation of absolute 
residual does not increase. These steps are invented in this 
paper to prevent the solution from diverging.

The algorithm continues to create solution vectors x(k) until 
a convergence is achieved. A convergence is reached when 
the iteration k becomes to the maximum number of iterations; 
the summation of absolute residual rsum is less than the max-
imum value of tolerance; or no longer change is made in 
the solution vector x(k). The solution vectors x(k) would be 
affected by an initial solution x(0) as the order m  becomes 
so large. Section 5.2 describes the impacts of initial solution. 

5. Computational Analysis 

In this section, we illustrate numerical and simulation ex-
periments that are conducted to demonstrate the GISA per-
formance, examine the influences of an initial solution and 
a relaxation method, and obtain the managerial insights. 

5.1 The Performance of GISA 

The GISA was developed to derive the stationary joint 
distribution of on-hand inventories in the retailer system and 
calculate the order fill rate of retailer system. The order fill 
rate is calculated by the probability that a customer order 
can be met immediately. We measure the performance of 
GISA by the order fill rate of retailer system.

For the purpose of testing the GISA performance, the test 
bed was designed as follows. Combining the number of items 
and the number of order types, four cases are chosen. Case 
1 is that J = 3 with |T | = 7. Case 2 is that J = 3 with |T | 
= 7 (asymmetric). Case 3 is that J = 3 with |T | = 4. Case 
4 is that J = 5 with |T | = 6. All possible order types occur 
in cases 1 and 2, and thus |T | = 7. Type 1 – 3 requires 
each item, respectively, type 4 – 6 requires combination 
of two items, respectively, and type 7 requires all items. We 
set that q1 = q2 = q3 = 0.05, q4 = q5 = q6 = 0.07, and q7 
= 0.64 for case 1, and q1 = 0.04, q2 = 0.05, q3 = 0.06, q4 
= 0.08, q5 = 0.06, q6 = 0.07, and q7 = 0.64 for case 2. Cases 
3 and 4 consider order types for individual items and one 
order type for all items, so |T | = J + 1. We set that q1 = 
q2 = q3 = q4 = 0.05 and q5 = 0.85 for case 3, and q1 = 
q2 = q3 = q4 = q5 = 0.05 and q6 = 0.75 for case 4. We 
treat order types symmetric for the order rate, however, we 
dealt with asymmetric order types for case 2.
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<Table 2> Comparison of GISA with the Gaussian Elimination and Computer Simulation

Case si
Gaussian GISA Simulation Absolute

F F rmax rsum F difference

1
5 0.8476 0.8476 0.0000 0.0000 0.8448 0.0028 

10 - 0.9474 0.0000 0.0000 0.9483 0.0009 
15 - 0.9794 0.0001 0.0005 0.9796 0.0003 

2
5 0.8475 0.8474 0.0000 0.0001 0.8462 0.0012 

10 - 0.9471 0.0001 0.0008 0.9468 0.0003 
15 - 0.9789 0.0001 0.0008 0.9790 0.0002 

3
5 0.8098 0.8098 0.0000 0.0000 0.8142 0.0044 

10 - 0.9155 0.0001 0.0006 0.9221 0.0066 
15 - 0.9556 0.0000 0.0005 0.9616 0.0060 

4
5 - 0.8407 0.0001 0.0006 0.8477 0.0070 

10 - 0.9478 0.0001 0.0005 0.9526 0.0048 
15 - 0.9852 0.0000 0.0003 0.9838 0.0014 

Within all retailer systems, equal base stock levels were 
chosen, i.e., s1 = s2 = ⋯ = sJ. For these base stock levels, 
we assigned three values of 5, 10, and 15. We set that all 
replenishment rates i and the overall order rate for the re-
tailer system  are equal to 1.0.

For the purpose of comparison, we obtained the exact or-
der fill rate by utilizing the Gaussian elimination. However, 
the Gaussian elimination was not suitable for the large cases 
requiring the large matrix manipulation. In this case, a simu-
lation program was developed to calculate the order fill rate. 
We implemented the simulation run for 5 times per each 
case. For each time, the simulation was implemented for 
10,000 customer orders with the warm-up of 1,000 orders. 
Then the order fill rate was averaged the 5 order fill rates 
resulted from simulations.

The results of this comparison are presented in <Table 
2>. For small cases, the order fill rates of retailer system 
calculated by the algorithm are almost same as those by the 
Gaussian elimination. This demonstrates the GISA perfor-
mance. We can notice the fact by just reviewing that rmax 
and rsum are near to zeros. For large cases, even though rmax 
and rsum demonstrate the performance of GISA, <Table 2> 
shows the comparison between the algorithm and computer 
simulation. The average value of absolute difference is 0.0030. 
Based on the results in <Table 2>, the GISA can be consi-
dered as a reliable algorithm to obtain the stationary joint 
distribution of on-hand inventories in the retailer system.

5.2 The Impacts of an Initial Solution and a 

Relation Method

The initial solutions are distinguished by assigning a 

different number of elements having a positive value in 
the initial solution vector. That is, we allocated a positive 
value to the only controlled elements in the initial solution 
vector, but zeros to the rest. W e calculated an equal pos-
itive value as dividing 1.0 by the number of positive ele-
ments.

In order to investigate the effect of initial solutions on 
the convergent speed of the GISA, we computed the order 
fill rates of case 4 in Section 5.1 as increasing the number 
of positive elements in the initial solution vector (e.g., 10, 
50, 100, and 150). For the two cases of si = 5 and si = 
10, <Figure 3> illustrates the convergent speeds. (This sec-
tion sets that  = 1.5 and i = 1.0 (i ∈ K).) From <Figure 
3>, we can observe that, in general, there is no significant 
difference in the convergent speed depending on the initial 
solutions. (In the case of si = 10, even though the initial 
solution having 10 positive values reaches to the con-
vergence faster than others, the accuracy is very poor.) 
However, it is observed that the more number of the base 
stock level requires the more iteration to reach to the 
convergence.

Meanwhile, we can recognize that the solution vectors 
will converge to a certain solution, because the GISA algo-
rithm provides the steps of stopping the solution from diver-
ging. However, it is observed that for the large cases, the 
GISA algorithm could converge to different solutions de-
pending on the initial solutions, which is shown in <Table 
3>. <Table 3> shows the order fill rates of the case of 
si = 10 in <Figure 3>. Among the 4 cases, the order fill 
rate of the initial solution having 50 positive values results 
in the highest degree of accuracy, i.e., a minimum value 
of rsum. 



Approximate Calculation of Order Fill Rate under Purchase Dependence 143

<Figure 3> The Convergent Speeds Depending on Initial Solutions

<Table 3> The Fill Rates Generated by the GISA with Different 

Initial Solutions

Initial solution F rmax rsum

10 0.7704 0.0007 0.0065 

50 0.7670 0.0000 0.0001 

100 0.7665 0.0002 0.0008 

150 0.7663 0.0003 0.0012 

It is well-known that the convergence of Gauss-Seidel 
method may sometimes be improved by combining with re-
laxation [10, 15]. The relaxation method modifies the Gauss- 
Seidel procedure in <Figure 2>, as given by 


  

  
  

 


  

   




 (5)

to


  

 



  
  

 


  

   






(6)

For choices of , the procedure is called as either an un-
der-relaxation method with 0 <  < 1 or an over-relaxation 
method with 1 < .

Like to the examination on the convergent speed of the 
GISA algorithm, we computed the order fill rates of case 
4 for various values of . For the two cases of si = 5 and 
si = 10, <Figure 4> illustrates the convergent speeds. (This 
section sets that  = 1.5 and i = 1.0 (i ∈ K).) We show 
only the results of under-relaxation methods because the re-
sults of over-relaxation methods are too poor. From <Figure 
4>, we can observe that the relaxation methods do not im-
prove the convergence speed of the GISA.

5.3 Analysis of Purchase Dependence  

This paper calculates the order fill rate of a retailer system 
considering purchase dependence. Purchase dependence im-
plies that the order is cancelled when an order comes and 
a retailer has some items in out-of-stock. In this section, we 
analyze the order fill rate as changing the degree of purchase 
dependence, thus deduce the managerial insights.

For analysis purpose, we utilized the case 1 in Section 
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<Figure 4> The Convergent Speeds of Under-Relaxation Method

<Table 4> Case 1 Values of dp and Associated qK

K
Item

dp
qK

1 2 3 0 0.25 0.325 0.475 0.55 0.745 0.85 0.925 1

1
2
3
4
5
6
7

1
0
0
1
1
0
1

0
1
0
1
0
1
1

0
0
1
0
1
1
1

0.33 
0.33 
0.33 
0.00 
0.00 
0.00 
0.00 

0.20 
0.20 
0.20 
0.10 
0.10 
0.10 
0.10 

0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.10 

0.10 
0.10 
0.10 
0.15 
0.15 
0.15 
0.25 

0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.40 

0.05 
0.05 
0.05 
0.07 
0.07 
0.07 
0.64 

0.00 
0.00 
0.00 
0.10 
0.10 
0.10 
0.70 

0.00 
0.00 
0.00 
0.05 
0.05 
0.05 
0.85 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 

5.1 as the test bed. In case 1, all base stock levels were 
assigned equally, i.e., s1 = s2 = s3 = 5. We set that all replen-
ishment rates i and the overall order rate for the retailer 
system  are equal to 1.0. 

The degree of purchase dependence (dp) is defined as

  
∈



        (7)

The degree of purchase dependence dp = 1 if all orders 
are the one order type for the set of all items. Inversely, 
if all orders are different order types for individual items 
only, dp = 0. The dp assesses how much demands are con-

nected each other. <Table 4> shows the values of dp and 
associated qK for case 1.

In order to investigate the attributes of order fill rate, we 
decomposed the order fill rate into the fill rate of a pure 
system. The pure system has one order type K . (We called 
the system as the type-K pure system.) The fill rate of type-K  
pure system is obtained by decomposing customer orders into 
item demands, in other words, by building new item demand 
processes. The new demand processes follow the same mar-
ginal distributions as the original order processes. For the 
type-K pure system, the overall order rate is approximated 
by averaging the demand rates of items in the type-K order. 
Let
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pK = the overall order rate for the type-K  pure system 

= 



∈

 . 

Then, the fill rate of type-K pure system is calculated by 

FpK = the joint probability of filling immediately all items 
in the type-K pure system 

=     ∈  

We calculate the fill rates of type-K  pure systems using 
the GISA after decomposing customer orders into item 
demands. 

<Table 5> and <Figure 5> show the fill rates of both 
type-K pure systems and the retailer system obtained by the 
GISA. We can recognize some managerial insights. First, 
the value of order fill rate poses between values of tow pure 
systems. One pure system consists of all items. The other 
consists of only one item. That is, these two fill rates are 
the lower and upper bounds for the order fill rate. The lower 
bound can be calculated by the fill rate of pure system having 
all items. The upper bound can be calculated by the one-item 
pure system.

<Table 5> Fill Rates of Type-K Pure and Whole Systems

dp Fp7 Fp4 = Fp5 = Fp6 Fp1 = Fp2 = Fp3 F

0.000 0.9930 0.9950 0.9973 0.9973 

0.250 0.9644 0.9729 0.9841 0.9781 

0.325 0.9498 0.9613 0.9767 0.9658 

0.475 0.9130 0.9328 0.9561 0.9318 

0.550 0.8915 0.9147 0.9429 0.9130 

0.745 0.8297 0.8569 0.9005 0.8476 

0.850 0.7950 0.8246 0.8740 0.8046 

0.925 0.7703 0.8011 0.8540 0.7757 

1.000 0.7460 0.7776 0.83333 0.7460 

Secondly, as the degree of purchase dependence declines 
while other conditions remain same, it is observed that the 
difference between the lower and upper bounds reduces, the 
order fill rate increases, and the order fill rate gets closer 
to the upper bound. From these results, it can be inferable 
that if we deal with purchase dependent item demands in-
dependently, we would face either unnecessary overstocking 
of some items or unsatisfactory service at the order level. 
For better profit and lower inventory costs, treating knowl-
edge of purchase dependence is important in designing an 
inventory replenishment policy. 

6. Conclusion 

For the retailer system having purchase dependence, we 
developed a new approximate calculation of the order fill 
rate. The order fill rate is the probability of meeting an cus-
tomer order immediately from existing inventory. During the 
derivation of the stationary joint distribution, traditional com-
putational methods face with the curse of dimensionality for 
the large problems.

This paper developed the GISA algorithm to elude the 
curse of dimensionality and keep the solution from diverging. 
The GISA algorithm is grounded on the Gauss-Seidel me-
thod. From the comparison analysis of the GISA and the 
simulation, this paper illustrated that the GISA is a reliable 
algorithm to gain the stationary joint distribution of on-hand 
inventories in the retailer system. 

In addition, we observed some managerial insights. (1) 
The upper bound of order fill rate can be calculated by the 
one-item pure system, while the lower bound can be provided 
by the pure system that consists of all items. (2) As the de-
gree of purchase dependence declines while other conditions 
remain same, it is observed that the difference between the 
lower and upper bounds reduces, the order fill rate increases, 
and the order fill rate gets closer to the upper bound.

Degree of purchase dependence

Fill rate

Fp1=Fp2=Fp3

Fp7 Fp4=Fp5=Fp6

F

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<Figure 5> Fill Rates Against the dp

As the degree of purchase dependence declines, the order 
fill rate gets closer to the upper bound created by the pure 
system. It is wondered when treating purchase dependent de-
mands as independent is tolerable. We leave this theme as 
the future studies.
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