Acknowledgement
Ziaur Rehman would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project No. R-2022-10.
References
- J. Dozier, G. Robert, A. Nolin and T. Painter,: Interpretation of snow properties from imaging spectrometry, Remote Sensing of Environment, vol. 113 (4), pp. 25-37, (2013)
- M. A. Haq,: Comparative analysis of hyperspectral and multispectral data for mapping snow cover and snow grain size, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 8 (499), pp 1-6, (2014)
- B. Hosseiny and R. Shah-Hosseini,: A hyperspectral anomaly detection framework based on segmentation and convolutional neural network algorithms, International Journal of Remote Sensing, vol. 41 (18), pp. 6946-6975, (2020) https://doi.org/10.1080/01431161.2020.1752413
- T. A. Moughal,: Hyperspectral image classification using support vector machine, Journal of Physics: Conference Series, vol. 439(42) , pp. 882-885, (2013) https://doi.org/10.1088/1742-6596/439/1/012042
- J. Yue, W. Zhao, S. Mao and H. Liu,: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks, Remote Sensing Letters, vol. 6 (6), pp. 468-477, (2015) https://doi.org/10.1080/2150704X.2015.1047045
- L. Pan, H. C. Li, Y. J. Deng, F. Zhang, X. D. Chen and Q. Du,: Hyperspectral dimensionality reduction by tensor sparse and low-rank graph-based discriminant analysis, Remote Sensing, vol. 9 (452), pp. 1-20, (2017)
- S. Yu, S. Jia and C. Xu,: Convolutional neural networks for hyperspectral image classification, Neurocomputing, vol. 219, pp. 88-98, (2017) https://doi.org/10.1016/j.neucom.2016.09.010
- J. Xu, H. Li, P. Liu and L. Xiao,: A Novel Hyperspectral Image Clustering Method with Context-Aware Unsupervised Discriminative Extreme Learning Machine, IEEE Access, vol. 6, pp.16176-16188. (2018) https://doi.org/10.1109/access.2018.2813988
- R. Hang, Q. Liu, D. Hong and P. Ghamisi,: Cascaded Recurrent Neural Networks for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5384-5394, (2019) https://doi.org/10.1109/tgrs.2019.2899129
- X. Zhao, Liang, A. J. X. Guo and F. Zhu,: Classification of smallscale hyperspectral images with multi-source deep transfer learning. Remote Sensing Letters, vol. 11 (4), pp. 303-312, (2020) https://doi.org/10.1080/2150704x.2020.1714772
- Q. Sun and S. Bourennane,: Hyperspectral image classification with unsupervised feature extraction," Remote Sensing Letters, vol. 11 (5), pp. 475-484, (2020) https://doi.org/10.1080/2150704x.2020.1731769
- J. Tang, S. Alelyani and S. Liu,: Feature Selection for Classification: A Review, Data Classification: Algorithms and Applications, CRC Press, pp. 1-29, (2014)
- A. Agarwal, T. El-Ghazawi, H. El-Askary and J. Le-Moigne,: Efficient hierarchical-PCA dimension reduction for hyperspectral imagery, in Proc. ISSPIT, Giza, Egypt, pp. 1077-1080, (2007)
- S. Kumar, J. Ghosh and M. M. Crawford,: Best-bases feature extraction algorithms for classification of hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, vol. 39 (7), pp. 1368-1379, (2001) https://doi.org/10.1109/36.934070
- G. Camps-Valls and L. Bruzzone,: Kernel-based methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 43 (6), pp. 1351-1362, (2005) https://doi.org/10.1109/TGRS.2005.846154
- L. Zhang, L. Zhang, D. Tao and X. Huang,: On combining multiple features for hyperspectral remote sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 50 (7), pp. 879-893, (2012) https://doi.org/10.1109/TGRS.2011.2162339
- Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu,: Deep Learning-Based Classification of Hyperspectral Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing vol. 7 (6), pp. 2094-2107, (2014) https://doi.org/10.1109/JSTARS.2014.2329330
- A E. Maxwell, T. A. Warner and F. Fang,: Implementation of machine-learning classification in remote sensing: an applied review, International Journal of Remote Sensing, vol. 39 (9), pp. 2784-2817, (2018) https://doi.org/10.1080/01431161.2018.1433343
- M. Coskun, O. Yildirim, A. Ucar and Y. Demir,: An Overview of Popular Deep Learning Methods, European Journal of Technology, vol. 7 (2), pp. 165-176, (2017) https://doi.org/10.23884/ejt.2017.7.2.11
- G. Ososkov and P. Goncharov,: Shallow and deep learning for image classification, Optical Memory and Neural Networks, vol. 26 (4), pp. 221-248, (2017) https://doi.org/10.3103/s1060992x1704004x
- A. Voulodimos, N. Doulamis, A. Doulamis and E. Protopapadakis,: Deep Learning for Computer Vision: A Brief Review, Computational Intelligence and Neuroscience, vol. 2018 (7068349), pp. 1-13, (2018)
- M. Peychev, P. Velickovic, and P. Lio,: Quantifying the Effects of Enforcing Disentanglement on Variational Autoencoders, in Proc. NIPS 2017, California, USA, (2017)
- Y. Chen, X. Zhao and X. Jia,: Spectral-spatial classification of hyperspectral data based on deep belief network, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing vol. 8 (6), pp. 2381-2392, (2015) https://doi.org/10.1109/JSTARS.2015.2388577
- J. Feng, and J. Zhang,: Unsupervised Feature Extraction in Hyperspectral Image Based on Improved Neighborhood Preserving Embedding, In Proc. IGARSS, pp. 1291-1294, Jia Feng, Junping Zhang, Harbin Institute of Technology, China, (2020)
- A. Romero, C.Gatta, and G. Camps-Valls,: Unsupervised deep feature extraction for remote sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 54 (3), pp.1349-1362, (2015) https://doi.org/10.1109/TGRS.2015.2478379
- J. Ji, S.Mei, J. Hou, X. Li, and Q. Du,: Learning sensorspecific features for hyperspectral images via 3- dimensional convolutional autoencoder, In Proc. IGARSS , pp. 1820-1823, United States, (2017)
- Zhang, J., Wei, W., Zhang, L. and Zhang, Y.: Improving hyperspectral image classification with unsupervised knowledge learning. In Proc. IGARSS , pp. 2722-2725, Yokohama, Japan, July, (2019)
- M. Liang, L.Jiao, S. Yang, F. Liu, B. Hou, and H. Chen,: Deep multiscale spectral-spatial feature fusion for hyperspectral images classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11 (8), pp.2911-2924, (2018) https://doi.org/10.1109/jstars.2018.2836671
- J. Bai, R.Feng, L. Wang, H.Li, F. Li, Y.Zhong, and L. Zhang,: Semi-Supervised Hyperspectral Unmixing with Very Deep Convolutional Neural Networks, In Proc. IGARSS , pp. 2400-2403 , Waikoloa, HI, USA , (2020)
- S. Singh, R. Kumar and A. P. Dimri,: Mass Balance Status of Indian Himalayan Glaciers: A Brief Review, Frontiers in Environmental Science, Vol 6 (30), pp. 1-9, (2018) https://doi.org/10.3389/fenvs.2018.00001
- L. Hamlin, R. O. Green, P. Mouroulis, P. Eastwood, Michael, D. Wilson, M. Dudik and C. Paine,: Imaging Spectrometer Science Measurements for Terrestrial Ecology: AVIRIS and New Developments, In Proc. AERO'11, Washington DC, USA, pp. 1 - 7, (2011)
- A. K. Thorpe, C. Frankenberg, A. D. Aubrey, D. A. Roberts, A. A. Nottrott, T. A. Rahn, J. A. Sauer, M. K. Dubey, K. R. Costigan, C. Arata and A. M. Steffke,: Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG), Remote Sensing of Environment, vol. 179, pp. 104-115, (2016) https://doi.org/10.1016/j.rse.2016.03.032
- M. A. Haq, K. Jain and K. P. R. Menon,: Modelling of Gangotri glacier thickness and volume using an artificial neural network, International Journal of Remote Sensing, vol. 35 (16), pp. 6035-6042, (2014) https://doi.org/10.1080/01431161.2014.943322
- M. A. Haq and M. F. Azam: Application of Artificial Neural Networks for Glacier Thickness Estimation in the Western Himalayas, India, In Proc. NCHC-2017, Banglore, India, pp. 17-22, (2017)
- M. A. Haq, A. Ghosh, G. Rahaman and P. Baral,: Artificial neural network-based modeling of snow properties using field data and hyperspectral imagery, Natural Resource Modeling, vol. 32 (4), pp. 1-36, (2019)
- R. Srinet, S. Nandy, H. Padalia, S. Ghosh, T. Watham, N. R. Patel and P. Chauhan,: Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine, International Journal of Remote Sensing, vol. 41 (18), pp. 1-14, (2020) https://doi.org/10.1080/01431161.2019.1597294
- I. Good fellow, Y. Bengio and A. Courville,: Deep Learning (Adaptive Computation and Machine Learning series), The MIT Press, ISBN 0262035618, (2019)
- K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel and Y Bengio,: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, In International conference on machine learning, pp. 2048-2057. PMLR, (2015)
- D. Thompson and S.D., Walter,: A reappraisal of the Kappa coefficient, Journal of Clinical Epidemiology, vol. 41, pp. 949-958, (1988) https://doi.org/10.1016/0895-4356(88)90031-5
- L. Boschetti, S. Flasse and P. Brivio,: Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary, Remote Sensing of Environment, vol. 91, pp. 280-292, (2004) https://doi.org/10.1016/j.rse.2004.02.015
- J. Sim and C.C. Wright,: The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements, Physical Therapy, vol. 85 (3), pp. 257-268, (2005) https://doi.org/10.1093/ptj/85.3.257
- J. M. Cook, A. Hodson, A. J. Taggart, S. H. Mernild and M. Tranter,: A predictive model for the spectral bioalbedo of snow, Journal of Geophysical Research Earth Surface, vol. 122, pp. 434-454. (2017) https://doi.org/10.1002/2016JF003932
- Xi. Kan, Y. Zhang, L. Zhu, L. Xiao, J. Wang, W. Tian and H. Tan,: Snow cover mapping for mountainous areas by fusion of MODIS L1B and geographic data based on stacked denoising auto-encoders, Computer Materials and Continua, vol. 57 (1), pp. 49-68, (2018) https://doi.org/10.32604/cmc.2018.02376