• Title/Summary/Keyword: current stimulation

Search Result 481, Processing Time 0.022 seconds

A Study on the Stimulation Transmit of PBDG (PBDG의 자격 전달에 관한 연구)

  • Kim, D.K.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1980-1982
    • /
    • 1999
  • Conductive Langmuir-Blodgett(LB) films have recently attracted much interest from the viewpoint of ultrathin film conductors at the molecular level. The result shows that the Maxwell-displacement-current (MDC) measuring technique is useful in the detection of phase-transitions over the entire range of molecule areas. In this parer, electrical properties of PBDG Langmuir(L) films were investigated using a displacement current measuring technique with pressure stimulation. Displacement current was generated When the Spread volume $150{\mu}{\ell}$ and compression velocity was about 30, 40, 50 mm/min. In the result, it is known that current is generated of higher current peek as compression velocity become faster.

  • PDF

A Study on the Stimulation Transmit of Langmuir Films (Langmuir 막의 자극 전달에 관한 연구)

  • 전동규;이경섭;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.113-117
    • /
    • 1995
  • The mechanism of the displacement current generation for stimulation transmit observed in the present displacement current measurement and theoretically analysed. The orientational change of molecules in monolayers was discussed on the basis of the Maxwell-displacement-current obtained. Maxwell displacement current was generated from monolayers on a water surface by monolayerr compression, and it measuring technique has been applied to the study of monolayers of Dipalmitoylphosphatidyl choline (L-${\alpha}$-DPPC). Finally, We measured that differential thermal analysis(DTA) of sample. Displacement current was generated when the area per molecule about 180${\AA}$$^2$in low pressure, and it was generated when the area per molecule about 110${\AA}$$^2$in high pressure. A result of DTA was showed that temperature at 124.6$^{\circ}C$.

  • PDF

Negative noxiousness of aldosterone analogue-induced hypertension and inhibition of aldosterone by silver spike point electrical stimulation (Aldosterone 유도체-고혈압의 음성적 유해와 은침점전기자극의 aldosterone 억제)

  • Chon, Ki-Young;Kim, Jung-Hwan;Kim, Soon-Hee;Min, Kyung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.199-207
    • /
    • 2003
  • The present study examined that in vivo/vitro test is investigated in normotensive sham-operated rats(NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA)-salt hypertensive rats(ADHR) and that the antiliypertensive effect was induced by silver spike point(SSP) electrical stimulation at meridian points(CV-3, -4, Ki-12, SP-6, LR-3, BL-25, -28, -32, -52), specifically, such as aldosterone in 24 hour urine analysis from normal volunteer. The heart weight, the tickness of vascular wall, collagen fiber and the systolic blood pressure were significantly increased in ADHR than that in NSR. The required time of PSS-induced resting tone and the phosphorylation of stress-activated protein kinase/c-Jun N-terminal protein kinase(SAPK/JNK) were significantly increased in ADHR than that in NSR. However, the Kv currents were significantly decreased in ADHR than that in NSR. The current of 1 Hz continue type of SSP electrical stimulation significantly decreased in excretion of urine aldosterone from normal volunteer. These results suggest that the development of aldosterone analogue-induced hypertension is associated with changed heart weight, content of collagen fiber, tickness of vascular wall, blood pressure, resting tone, voltage-dependent K+ current(Kv) and phosphorylation of SAPK/JNK, which directly affects blood pressure. Therefore the hypertension is a risk factor on cerebrovascular disease. Moreover, These results suggest that the SSP electrical stimulation, especially current of 1 Hz continue type, significantly regulates excretion of urine aldosterone from volunteer.

  • PDF

Potential Effects of Micro-Current Stimulation for Reduction of Abdominal Fat and Weight Loss: Clinical Study (미세 전류 자극에 따른 복부 체지방 감소 및 다이어트 효과에 대한 임상 시험 연구)

  • Cho, Seungkwan;Kim, Seongguk;Kim, Donghyun;Kim, Seohyun;Lee, Hana;Hwang, Donghyun;Kim, Yong-Min;Shin, Taemin;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.284-296
    • /
    • 2018
  • Obesity is considered as a primary health problem over the past century in line with life environmental changes. It is mainly associated with increased risk of numerous chronic diseases which may significantly reduce health-related quality of life. Therefore, efforts to reduce weight should be performed. This study suggested a novel approach to reduce body fat by applying external stimulation which is micro-current stimulation (MCS). In this clinical study, we evaluated the potential effects of MCS for reduction of abdominal fat and weight loss. Prior to the clinical test, computational simulation was conducted to find the proper MCS conditions that allow externally applied stimulation to reach the internal fat section from the external skin. Particularly, the clinical study evaluated the unilateral effects of MCS for body fat loss and lipolysis without any additional limitations such as physical exercise and dietary therapy. The results showed that whole body fat, waist circumferences, and abdominal fat are gradually decreased after intervention in proportion to the time. From the results, we can estimate that MCS can be effective on the body fat loss by activation of lipolysis in human adipose.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

The Effects of Interferential Current Therapy on Sympathetic Nerve System in Senile patients (간섭파가 노인의 교감신경계에 미치는 영향)

  • Park Rae-Joon;Lee Moon-Hwan;Kim Dong Hyeon
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.111-122
    • /
    • 2003
  • The purpose of this study was to investigate the influence on sympathetic nerve system of interferential current therapy(ICT). The subjects were consisted of 20 senile patients, 10 males and 10 females with an average age of 71 years old. And systolic and diastolic blood pressure, temperature, heart rate, and respiratory were tested. The results were as follows: 1) Systolic and diastolic blood pressure were observed a statistical significance between before and during stimulation(p < .05). 2) Temperature was observed a statistical significance between before and during, and before and after 10 minutes stimulation(p < .05). 3) Heart rate and respiratory were not statistical significance(p > .05). These results are imply that electrical stimulation is directly or indirectly influence on sympathetic nerve system.

  • PDF

A 16-channel Neural Stimulator IC with DAC Sharing Scheme for Artificial Retinal Prostheses

  • Seok, Changho;Kim, Hyunho;Im, Seunghyun;Song, Haryong;Lim, Kyomook;Goo, Yong-Sook;Koo, Kyo-In;Cho, Dong-Il;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.658-665
    • /
    • 2014
  • The neural stimulators have been employed to the visual prostheses system based on the functional electrical stimulation (FES). Due to the size limitation of the implantable device, the smaller area of the unit current driver pixel is highly desired for higher resolution current stimulation system. This paper presents a 16-channel compact current-mode neural stimulator IC with digital to analog converter (DAC) sharing scheme for artificial retinal prostheses. The individual pixel circuits in the stimulator IC share a single 6 bit DAC using the sample-and-hold scheme. The DAC sharing scheme enables the simultaneous stimulation on multiple active pixels with a single DAC while maintaining small size and low power. The layout size of the stimulator circuit with the DAC sharing scheme is reduced to be 51.98 %, compared to the conventional scheme. The stimulator IC is designed using standard $0.18{\mu}m$ 1P6M process. The chip size except the I/O cells is $437{\mu}m{\times}501{\mu}m$.

A Double-Blind, Sham-Controlled, Pilot Study to Assess the Effects of the Concomitant Use of Transcranial Direct Current Stimulation with the Computer Assisted Cognitive Rehabilitation to the Prefrontal Cortex on Cognitive Functions in Patients with Stroke

  • Park, See-Hyun;Koh, Eun-Jeong;Choi, Ha-Young;Ko, Myoung-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.484-488
    • /
    • 2013
  • Objective : To examine the synergistic effects of both computer-assisted cognitive rehabilitation (CACR) and transcranial direct current stimulation (tDCS) on cognitive function in patients with stroke. Methods : The current double-blind, sham-controlled study enrolled a total of 11 patients who were newly diagnosed with stroke. The patients of the tDCS group (n=6) completed sessions of the Korean computer-assisted cognitive rehabilitation program five times a week for 30 minutes a session during a mean period of 18.5 days concomitantly with the anodal tDCS over the bilateral prefrontal cortex combined with the CACR. The patients of the control group (n=5) also completed sessions of the sham stimulation during a mean period of 17.8 days. Anodal tDCS over bilateral prefrontal cortex (F3 and F4 in 10-20 EEG system) was delivered for 30 minutes at an intensity of 2 mA. Cathode electrodes were applied to the non-dominant arm. All the patients were evaluated using the Seoul Computerized Neuropsychological Test (SCNT) and the Korean Mini-Mental State Examination. Results : Mann-Whitney U test revealed a significant difference between the two groups. The patients of the tDCS group achieved a significant improvement in the post/pre ratio of auditory continuous performance test and visual continuous performance test on the SCNT items. Conclusion : Our results indicate that the concomitant use of the tDCS with CACR to the prefrontal cortex may provide additional beneficial effects in improving the cognitive dysfunction for patients with stroke.

Review : Effectiveness of transcranial direct current stimulation in rodent models of Alzheimer's disease (알츠하이머병 쥐 모델에서 경두개 직류 전기자극의 효용성 검토)

  • Kim, Ji-Eun;Park, Ye-Eun;Jeong, Jin-Hyoung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.403-412
    • /
    • 2021
  • Alzheimer's disease (AD) is the most common cause of dementia, showing progressive neurodegeneration. Although oral medications for symptomatic improvement still take a huge part of treatment, there are several limitations caused by pharmacology-based real world clinic. In this respect, non-pharmacologic treatment for AD is rising to prominence. Transcranial direct current stimulation (tDCS) is a one of the non-invasive neuromodulation technique, using low-voltage direct current. In terms of safety, tDCS already has been proven through numerous previous reports. This review focused on behavioral, neurophysiologic and histopathologic improvement by applying tDCS in AD rodent models, thereby suggesting reliable background evidence for human-based tDCS study.