• Title/Summary/Keyword: current source

Search Result 4,009, Processing Time 0.032 seconds

COLOR DIFFERENCES BETWEEN RESIN COMPOSITES BEFORE- AND AFTER-POLYMERIZATION, AND SHADE GUIDES (복합레진의 광중합 전·후와 shade guide의 색차 비교)

  • Chon, Yi-Ju;Cho, Sung-Shik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.299-309
    • /
    • 1999
  • The composite resin, due to its esthetic qualities, is considered the material of choice for restoration of anterior teeth. With respect to shade control, the direct-placement resin composites offer some distinct advantages over indirect restorative procedures. Visible-light-cured (VLC) composites allow dentists to match existing tooth shades or to create new shades and to evaluate them immediately at the time of restoration placement. Optimal intraoral color control can be achieved if optical changes occurring during application are minimized. An ideal VLC composite, then, would be one which is optically stable throughout the polymerization process. The shade guides of the resin composites are generally made of plastic, rather than the actual composite material, and do not accurately depict the true shade, translucency, or opacity of the resin composite after polymerization. So the numerous problems associated with these shade guides lead to varied and sometimes unpredictable results. The aim of this study was to assess the color changes of current resin composite restorative materials which occur as a result of the polymerization process and to compare the color differences between the shade guides provided with the products and the actual resin composites before- and after-polymerization. The results obtained from this investigation should provide the clinician with information which may aid in improved color match of esthetic restoration. Five light activated, resin-based materials (${\AE}$litefil, Amelogen Universal, Spectrum TPH VeridonFil-Photo, and Z100) and shade guides were used in this study. Three specimens of each material and shade combination were made. Each material was condensed inside a 1.5mm thick metal mold with 10mm diameter and pressed between glass plates. Each material was measured immediately before polymerization, and polymerized with Curing Light XL 3000 (3M Dental products, USA) visible light-activation unit for 60 seconds at each side. The specimens were then polished sequentially on wet sandpaper. Shade guides were ground with polishing stones and rubber points (Shofu) to a thickness of approximately 1.5mm. Color characteristics were performed with a spectrophotometer (CM-3500d, Minolta Co., LTD). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$ and $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E{^*}ab$) of resin composites before the polymerization process and shade guides using the post-polishing color of the composite as a control, CIE standard D65 was used as the light source. The results were as follows. 1. Each of the resin composites evaluated showed significant color changes during light-curing process. All the resin composites evaluated except all the tested shades of 2100 showed unacceptable level of color changes (${\Delta}E{^*}ab$ greater than 3.3) between pre-polymerization and post-polishing state. 2. Color differences between most of the resin composites tested and their corresponding shade guides were acceptable but those between C2 shade of ${\AE}$litefil and IE shade of Amelogen Universal and their respective shade guides exceeded what is acceptable. 3. Comparison of the mean ${\Delta}E{^*}ab$ values of materials revealed that Z100 showed the least overall color change between pre-polymerization and post-polishing state followed by ${\AE}$litefil, VeridonFil-Photo, Spectrum TPH, and Amelogen Universal in the order of increasing change and Amelogen Universal. Spectrum TPH, 2100, VeridonFil-Photo and ${\AE}$litefil for the color differences between actual resin and shade guide. 4. In the clinical environment, the shade guide is the better choice than the shade of the actual resin before polymerization when matching colors. But, it is recommended that custom shade guides be made from resin material itself for better color matching.

  • PDF

The Brand Personality Effect: Communicating Brand Personality on Twitter and its Influence on Online Community Engagement (브랜드 개성 효과: 트위터 상의 브랜드 개성 전달이 온라인 커뮤니티 참여에 미치는 영향)

  • Cruz, Ruth Angelie B.;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.67-101
    • /
    • 2014
  • The use of new technology greatly shapes the marketing strategies used by companies to engage their consumers. Among these new technologies, social media is used to reach out to the organization's audience online. One of the most popular social media channels to date is the microblogging platform Twitter. With 500 million tweets sent on average daily, the microblogging platform is definitely a rich source of data for researchers, and a lucrative marketing medium for companies. Nonetheless, one of the challenges for companies in developing an effective Twitter campaign is the limited theoretical and empirical evidence on the proper organizational usage of Twitter despite its potential advantages for a firm's external communications. The current study aims to provide empirical evidence on how firms can utilize Twitter effectively in their marketing communications using the association between brand personality and brand engagement that several branding researchers propose. The study extends Aaker's previous empirical work on brand personality by applying the Brand Personality Scale to explore whether Twitter brand communities convey distinctive brand personalities online and its influence on the communities' level or intensity of consumer engagement and sentiment quality. Moreover, the moderating effect of the product involvement construct in consumer engagement is also measured. By collecting data for a period of eight weeks using the publicly available Twitter application programming interface (API) from 23 accounts of Twitter-verified business-to-consumer (B2C) brands, we analyze the validity of the paper's hypothesis by using computerized content analysis and opinion mining. The study is the first to compare Twitter marketing across organizations using the brand personality concept. It demonstrates a potential basis for Twitter strategies and discusses the benefits of these strategies, thus providing a framework of analysis for Twitter practice and strategic direction for companies developing their use of Twitter to communicate with their followers on this social media platform. This study has four specific research objectives. The first objective is to examine the applicability of brand personality dimensions used in marketing research to online brand communities on Twitter. The second is to establish a connection between the congruence of offline and online brand personalities in building a successful social media brand community. Third, we test the moderating effect of product involvement in the effect of brand personality on brand community engagement. Lastly, we investigate the sentiment quality of consumer messages to the firms that succeed in communicating their brands' personalities on Twitter.

A Sustainable Operation Plan for School Gardens - Based on a Survey of Elementary School Gardens in Seoul (학교 텃밭의 지속적인 운영방안에 관한 연구 - 서울특별시 초등학교의 학교 텃밭 실태조사를 바탕으로 -)

  • Choi, I-Jin;Lee, Jae Jung;Cho, Sang Tae;Jang, Yoon Ah;Heo, Joo Nyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.36-48
    • /
    • 2018
  • This study surveyed 599 elementary schools in Seoul to provide measures for the quantitative expansion and sustainable operation of environmentally-friendly school garden. Of all schools, 161 schools had formed and were operating school gardens. The total area of school gardens was $166,901m^2$ and the mean area was $131.2m^2$ in elementary, junior high and high schools in Seoul. Meanwhile, the total area of school gardens was $65,493m^2$ and the mean area was $363m^2$ in 161 schools that participated in the survey, indicating $1.15m^2$ per student. Of these schools, 11.8% were operating gardens themselves, while 50.3% were operating gardens that had been newly renovated or environmentally improved by institutional support projects after initially managing gardens themselves. According to the locations of school gardens, mixed-type gardening (a combination of school gardening and container vegetable gardening) accounted for 34.8%, followed by school gardening at 32.9%, container vegetable gardening at 29.2%, and suburb community gardening at 3.1%. Those in charge of garden operations were teachers at 51.6%, comprising the largest percentage. Facilities built when forming the garden included storage facilities for small-scale greenhouses and farming equipment at 26.1%, accounting for the largest percentage. No additional facilities constructed accounted for 21.7%. The greatest difficulty in operating gardens was garden management at 34.2%. The most needed elements for the sustainable operation of gardens were improvement in physical environment and the need for hiring a paid garden, each accounting for 32%. The most important purpose for school gardening was creating educational environments (81.6%). The major source for gaining information on garden management was consultation from acquaintances (67.8%). Schools that utilize plant waste from gardens as natural fertilizers accounted for 45.8% of all schools. Responses to the impact of operating school gardens for educational purpose were positive in all schools as 'very effective' in 63.2% and 'effective' in 36.8%. This study was meaningful in that it intended to identify the current status of the operation of school gardens in elementary schools in Seoul, support the formation of school gardens appropriate for each school with sustainable operation measures, implement a high-quality education program, develop teaching materials, expand job training opportunities for teachers in charge, devise measures to support specialized instructors, and propose the need for a garden management organization.

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Christian Sabbath and Christian Education in the Era of 'Life Crisis' ('생명 위기'의 시대, 기독교의 안식, 그리고 기독교교육)

  • Ryu, Sam Jun
    • Journal of Christian Education in Korea
    • /
    • v.67
    • /
    • pp.339-375
    • /
    • 2021
  • The author considers that contemporary society has entered the era of 'life on earth in peril' as a very serious situation in comparison with the past, and assumes that this life-in-peril situation, known as 'life crisis,' is one of the most urgent and important issues in Christian education as well as in public education. This urgency and importance is mainly based on the belief that Christianity is the religion of life that values all living beings' life and all Christians have the sacred vocation to cope with this crisis of life on earth, given by the life-giving God. For this reason, this study aims at identifying some tasks that Christian education should perform in the era of imperiled life, premising that diverse life-threatening situations and circumstances in today's world are closely related to the Christian Sabbath. More specifically, first of all, this article analyzes some notable phenomena of the life crisis in the contemporary world, such as deaths from intentional self-harm (suicides), deaths from industrial accidents and disasters, the real-life situation of vulnerable populations, people's indifference and insensitivity to the situation, and natural environmental degradation, by reflecting on current global issues as well as issues in Korea. This paper also criticizes neoliberalism, productivism, consumerism, economic materialism, egotism, and anthropocentrism as ideologies for causing these phenomena. After the criticism, the author interprets, from biblical and theological perspectives on the Christian Sabbath, main purposes and meanings of the Sabbath for contemporary society that are deeply connected with the crisis of life on earth: confessing that God takes the initiative to govern every creature's living and being; building the relationship with the God who has given the power of life to all living beings; practicing the Sabbath rest by living a holy life; and participating in the Sabbath rest as 'life-giving ministry.' In conclusion, this article suggests Christian educational practices that confront the life crisis, rooted in the purposes and meanings of the Christian Sabbath: reminding participants of the belief that God is the source of life on earth; cultivating 'life literacy'; helping people to resist the crisis of life; and encouraging humans to pursue the well-being and peace of both humanity and the earth.

Effects of Initiation and Perceived Similarity on the Evaluation of Online Communities (온라인 커뮤니티 속 가입절차 및 지각된 유사성에 따른 평가의 차이)

  • Yoo, Jihyun;Kang, Hyunmin;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.25-36
    • /
    • 2018
  • Nowadays, it is hard to imagine one's life without smart phones or the internet. Furthermore, not only do people form groups offline, but also online. Based on the cognitive dissonance theory, there have been many studies about how an offline group's initiation affects attitudes toward the group. However, there has not been a study about how an online group's initiation can affect attitudes toward the group. Therefore, this study aims to find out how cognitive dissonance aroused by initiation affects the attitudes toward the online community, which represents groups that are formed online. In addition, this study examined how perceived similarity affects changes in attitude aroused by cognitive dissonance. Participants were assigned to a group in three ways as follows: without a registration process, with a simple registration process, and/or with a complex registration process. Perceived similarity was calculated by the difference between the current body mass index (BMI) and the target BMI of the participant. Attitudes toward the online group were measured by perceived source credibility, perceived information quality, satisfaction, information usefulness, and continuance intention. Contrary to the cognitive dissonance theory, the results showed that when applied to offline social groups, there were conflicting results. There were cases where there was no difference in the evaluation between initiation conditions. However, other cases showed that groups with the most complex registration process were found to have the worst evaluation. People were more favorable toward the group when the perceived similarity was larger. Interestingly, people who had higher perceived similarity had more positive attitudes toward the groups that had been assigned with a registration process compared to the group formed without a registration process. Conversely, people with lower perceived similarity had more positive attitudes toward the group when there was no initiation process. Online communities may use the results of this study to design more suitable registration processes for their communities.

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability (충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰)

  • Moon, Sang-Ho;Kee, Weon-Seo;Ko, Kyung-Seok;Lee, Cholwoo;Choi, Hanna;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.477-495
    • /
    • 2022
  • This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.