DOI QR코드

DOI QR Code

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability

충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰

  • Moon, Sang-Ho (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kee, Weon-Seo (Geological Research Center, Geology Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ko, Kyung-Seok (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Cholwoo (Deep Subsurface Storage and Disposal Research Center, Geology Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Choi, Hanna (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Koh, Dong-Chan (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 문상호 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ;
  • 기원서 (한국지질자원연구원 국토지질연구본부 지질연구센터) ;
  • 고경석 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ;
  • 이철우 (한국지질자원연구원 국토지질연구본부 심층처분환경연구센터) ;
  • 최한나 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ;
  • 고동찬 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터)
  • Received : 2022.08.26
  • Accepted : 2022.10.16
  • Published : 2022.10.28

Abstract

This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

본 연구는 충주 앙성지역 탄산천의 이용량에 따른 수위 및 수질 변화 패턴을 분석하여 탄산천의 지 속가능성을 검토하였으며, 암석/물의 87Sr/86Sr 값과 주변 W-Mo 광상에서의 함-CO2 유체포유물의 산출, 주변의 지질학적 특성 등을 고려하여 탄산 성분의 기원과 공급에 대하여 고찰하였다. 1986년부터 2017년까지의 자료에 의하면, 탄산천의 수위 심도는 탄산 온천공 개발 초기(1986~1992년)에 비해 후기(2009~2015년)에 매우 하강되어 있으며, 적정양수량도 점차 감소되는 경향을 보였다. 탄산 성분 역시 개발 초기에 비해 후기로 가면서 지속적으로 저감되었으나, 2012년 이후로는 안정된 양상을 보였다. CO2 성분의 기원과 공급은 연구지역 주변에 발달된 W-Mo 석영맥 광상(0.5×1.5×수 km 규모)의 지질학적 생성 환경과 크게 관계된 것으로 추정되며, CO2 성분의 공급이 지하 심부의 마그마 활동으로부터 무한히 공급되는 것이 아니라 과거 지질시대에 형성된 부존지역에서 공급되기 때문에 탄산천의 지속가능성 유지를 위해서는 연구지역 내 탄산수의 이용량을 효율적으로 조정할 필요가 있다.

Keywords

Acknowledgement

이 연구는 국가과학기술연구회의 창의형 융합연구사업 "한국의 자연기원 좋은물 발굴·확보 및 가치고도화 기술개발 (CAP-17-05-KIGAM)"과 한국지질자원연구원의 기본사업 "기후변화대응 대용량지하수 확보 및 최적활용기술 개발 (GP2020-012)"의 지원을 받아 수행되었습니다. 이 논문을 심사하여 주신 심사위원들께 감사의 말씀을 드립니다.

References

  1. Aberg, G., Jacks, G., Wickman, T. and Hamilton, D.J. (1990) Strontium isotopes in trees as an indicator for calcium availability. Catena, v.17, p.1-11. doi:10.1016/0341-8162(90)90011-2
  2. Bakalowicz, M. (1979) Contribution de geochimie des eaux a la connaissance de l'aquifere karstique et de la karstification. PhD thesis, Univ. Pierre et Marie Curie, Paris, France.
  3. Barnes, I., Irwin, W.P. and White, D.E. (1978) Global distribution of carbon dioxide discharges and major zones of seismicity. OpenFile Report. Water Resources Investigations 78-39. Menlo Park, California, U.S. Geol. Survey, p.1-12. doi: 10.3133/wri7839
  4. Blavoux, B., Dazy, J. and Sarrot-Reynauld, J. (1982) Information about the origin of themomineral waters and gas by means of environmental isotopes in eastern Azerbaikan, Iran, and southeast France. J. Hydrol., v.56, p.23-38. https://doi.org/10.1016/0022-1694(82)90054-3
  5. Cartwright, I., Weaver, T., Tweed, S., Ahearne, D., Cooper, M., Czapnik, K. and Tranter, J. (2002) Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem. Geol., v.185, p.71-91. doi: 10.1016/S0009-2541(01)00397-7
  6. Ceron, J.C., Pulido-Bosch, A. and Galdeano, C.S. (1998) Isotopic identification of CO2 from a deep origin in thermomineral waters of southeastern Spain. Chem. Geol., v.149, p.251-258. doi: 10.1016/S0009-2541(98)00045-X
  7. Chivas, A.R., Barnes, I.E., William, C., Lupton, J.E. and Stone, J.O. (1987) Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions. Nature, v.326, p.587-589. doi: 10.1038/326587a0
  8. Clark, I.D. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology, Lewis Publisher, New York, 329p.
  9. Darling, W.G., Griesshaber, E., Andrews, J.N., Armannsson, H. and O'Nions, R.K. (1995) The origin of hydrothermal and other gases in the Kenya Rift Valley. Geochim. et Cosmochim. Acta, v.59, p.2501-2512. doi: 10.1016/0016-7037(95)00145-X
  10. Deines, P. (1970) The carbon and oxygen isotopic composition of carbonates from the Oka carbonatite complex, Quebec, Canada. Geochim. et Cosmochim. Acta, v.34, p.1199-1225. doi: 10.1016/0016-7037(70)90058-X
  11. Drever, J.I. (1997) The geochemistry of natural waters. Prentice Hall, Englewood Cliffs, NJ.
  12. Giggenbach, W.F. (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth and Planet. Sci. Lett., v.113, p.495-510. doi: 10.1016/0012-821X(92)90127-H
  13. Giggenbach, W.F. and Corrales-Soto, R. (1992) Isotopic and chemical composition of water and steam discharges from volcanicmagmatic-hydrothermal systems of the Guanacaste geothermal province, Coast Rica. Applied Geochem., v.7, p.309-332. doi: 10.1016/0883-2927(92)90022-U
  14. Gosselin, D.C., harvey, F.E., Frost, C., Stotler, R. and Macfarlane, P.A. (2004) Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA. Appl. Geochem., v.19, p.359-377. doi:10.1016/S0883-2927(03)00132-X
  15. Griesshaber, E., O'Nions R.K. and Oxburgh, E.R. (1992) Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. Chem. Geol., v.99, p.213-235. doi: 10.1016/0009-2541(92)90178-8
  16. Hancock, P.L., Chalmers, R.M.L., Altunel, E. and Cakir, Z. (1999) Travitonics: using travertines in active fault studies. J. Struct. Geol., v.21, p.903-916. https://doi.org/10.1016/S0191-8141(99)00061-9.
  17. Higgins, N.C. (1980) Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solution. Can. Jour. Earth Sci., v.17, p.823-830. doi: 10.1139/e80-082
  18. Irwin, W.P. and Barnes, I. (1980) Tectonic relations of carbon dioxide discharges and earthquakes. J. Geophys. Res., v.85, p.3115-3121. doi: 10.1029/JB085iB06p03115
  19. Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M. and Sakai, H. (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chem. Geol., v.123, p.1-15. doi: 10.1016/0009-2541(95)00051-M
  20. Jeong, C.H., Kim, J.G. and Lee, J.Y. (2001) Occurrence, geochemistry and origin of CO2-rich water from the Chungcheong area, Korea. Econ. Environ. Geol., v.34, p.227-241.
  21. Jeong, C.H., Kim, H.J. and Lee, S.Y. (2005) Hydrochemistry and genesis of CO2-rich springs from Mesozoic granitoids and their adjacent rocks in South Korea. Geochemical Journal, v.39, p.517-530. https://doi.org/10.2343/geochemj.39.517
  22. Keppel, M.N., Karlstrom, K., Crossey, L., Love, A.J. and Priestley, S. (2020) Evidence for intra-place seismicity from springcarbonate mound springs in the Kati Thanda-Lake Eyre region, South Australia: implications for groundwater discharge from the Great Artesian Basin, Hydrogeol., v.28, p.297-311. https://doi.org/10.1007/s10040-019- 02049-1.
  23. KHSA(Korea Hot Spring Association) and KHSRC((Ltd.)Korea Hot Spring Research Center) (2012) Inspection report for hot spring well of Neung-am area at Chungju. Report No. 2012-011, 67p.
  24. KHSA(Korea Hot Spring Association) and KHSRC((Ltd.)Korea Hot Spring Research Center) (2015) Periodic inspection report for Jungweon hot spring resources at Chungju. Report No. 2014-008, 61p.
  25. KHSRC(Korea Hot Spring Research Center) (2009a) Periodic inspection report for hot spring resources of Neung-am hot spring protection area. Report No. 09-2 (No.126), 100p.
  26. KHSRC(Korea Hot Spring Research Center) (2009b) Periodic inspection report for hot spring resources of Jungweon hot spring protection area. Report No. 09-3 (No.127), 96p.
  27. KHSRC(Korea Hot Spring Research Center) (2010a) Hot spring water quality report for Jungweon hot spring protection area. 20p.
  28. KHSRC(Korea Hot Spring Research Center) (2010b) Hot spring water quality report for Jungweon hot spring. 20p.
  29. KHSRC(Korea Hot Spring Research Center) (2010c) Hot spring water quality report for Neung-am hot spring. 20p.
  30. KIER(Korea Institute of Energy and Resorces) (1991) Investigation report for hot spring well of Jungweon Angseong area. Report No. 91-3 (No.71), 55p.
  31. KIGAM(Korea Institute of Geology, Mining and Materials) (1992) Investigation report for hot spring resources of Jungweon Angseong area. Report No. 92-18 (No.100), 146p.
  32. KIGAM(Korea Institute of Geology, Mining and Materials) (2004) Periodic inspection report for hot spring well of Jungweon Angseong area. Report No. 2004-3 (No.317), 43p.
  33. Kim, K., Jeong, D.H., Kim, Y., Koh, Y.-K., Kim, S.-H. and Park, E. (2008) The geochemical evolution of very dilute CO2-rich water in Chungcheong province, Korea: processes and pathways.
  34. Geofluids, v.8, p.3-15. doi: 10.1111/j.1468-8123.2007.00200.x Kim, K.H. (1992) Geochemical study of some Mesozoic granitic rocks in South Korea. Econ. Environ. Geol., v.25, p.435-446.
  35. Koh, Y.-K., Yun, S.-T., Kim, C.-S., Choi, H.-S. and Kim, G.-Y. (1999) Geochemical evolution of CO2-rich groundwater in the Jungwon area. Econ. Environ. Geol., v.32, p.469-483.
  36. Koh, Y.-K., Choi, B.-Y., Yun, S.-T., Choi, H.-S., Mayer, B. and Ryoo, S.-W. (2008) Origin and evolution of two contrasting thermal groundwaters (CO2-rich and alkaline) in the Jungwon area, South Korea: Hydrochemical and isotopic evidence. Journal of Volcanology and Geothermal Research, v.178, p.777-786. doi: 10.1016/j.jvolgeores.2008.09.008
  37. Kyser, T.K. (1986) Stable isotope variations in the mantle. In: Valley, J.W., Taylor, H.P., O'Neil, J.R. (eds.) Stable isotopes in high-temperature geological processes. Miner. Soc. Amer., Melbourne, Australia, Reviews in Mineralogy, v.16, p.141-164.
  38. Lee, J.M., Koh, D.-C., Chae, G.-T., Kee, W.-S. and Ko, K.-S. (2021) Integrated assessment of major element geochemistry and geological setting of traditional natural mineral water sources in South Korea at th national scale. J. Hydrol., v.598, p.126249. https://doi.org/10.1016/j.jhydrol.2021.126249
  39. Mayo, A.L. and Muller, A.B. (1997) Low temperature diageneticmetamorphic and magmatic contributions of external CO2 gas to shallow groundwater system. Journal of Hydrology, v.194, p.286-304. doi: 10.1016/S0022-1694(96)03215-5
  40. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, p.509-567.
  41. O'Nions, R.K. and Oxburgh, E.R. (1988) Helium, volatile fluxes and the development of continental crust. Earth and Planet. Sci. Letters, v.90, p.331-347. doi: 10.1016/0012-821X(88)90134-3
  42. Park, H.I. and Choi, S.W. (1974) A study on the fluid inclusions in the minerals from the Dae Hwa tungsten-molybdenum deposits. Jour. Korean Inst. Mining Geol., v.7, No.2, p.63-78.
  43. Park, H.-P. and Park, H.-I. (1979) Studies on the fluid inclusions of Useok polymetalic mineral deposits. J. Geol. Soc. Korea, v.15, p.282-294.
  44. Park, H.I., Lee, S.M., Lee, M.S. and Kim, S.J. (1981) A study on the genesis of the metallic ore deposits in Hwanggangri region. J. Geol. Soc. Korea, v.17, p.201-222.
  45. Park, H.-I., Choi, S.-W. and Kim, D.-L. (1985a) Ore and mineral paragenesis of Daehwa and Donsan tungsten-molybdenum deposits. Jour. Korean Inst. Mining Geol., v.18, p.11-22.
  46. Park, H.-I., Choi, S.-W. and Kim, D.-L. (1985b) Fluid inclusions of Daehwa and Donsan tungsten-molybdenum deposits. Jour. Korean Inst. Mining Geol., v.18, p.225-237.
  47. PCC(Pyojun Concrete Corporation) (1986) Feasibility review report for Neungamri hot spring development. 52p.
  48. Schoell, M. (1983) Genetic characterization of natural gases. Amer. Assoc. Petrol. Geol. Bull., v.67, p.2225-2238. doi: 10.1306/AD46094A-16F7-11D7-8645000102C1865D
  49. Sheppard, S.M.F. (1986) Characterization of isotopic variations in natural waters. In: Valley, J.W., Taylor, H.P., O'Neil, J.R. (eds.) Stable isotopes in high-temperature geological processes. Miner. Soc. Amer., Washington, DC, Reviews in Mineralogy, v.16, p.165-184.
  50. So, C.-S., Shelton, K,L., Seidemann, D.E. and Skinner, B.J. (1983) The Dae Hwa tungsten-molybdenum mine, Republic of Korea: A geochemical study. Econ. Geol., v.78, p.920-930. doi: 10.2113/gsecongeo.78.5.920
  51. Takenouchi, S. (1971) Study of CO2-bearing fluid inclusions by means of the freezing stage microscope. Mining Geology (in Japanese). v.21, No.108, p.286-300. doi: 10.11456/shigenchishitsu1951.21.286
  52. Uchida, E., Choi, S.G., Babal, D. and Wakisaka, U. (2012) Petrogenesis and solidification depth of the Jurassic Daebo and Cretaceous Bulguksa granitic rocks in South Korea. Resource Geology, v.62, p.281-295. doi: 10.1111/j.1751-3928.2012.00195.x
  53. Vogel, J.C. (1993) Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer, J.R., Hall, A.E., Farquar, G.D. (eds.) Stable isotopes and plant carbon. Academic Press, San Diego, p.29-38.
  54. Wexteen, P., Jaffe, F.C. and Mazor, E. (1988) Geochemistry of cold CO2-rich springs of the Scuol-Tarasp region, Lower Engadine, Swiss Alps. J. Hydrol., v.104, p.77-92. doi: 10.1016/0022-1694(88)90158-8