• Title/Summary/Keyword: current phase

Search Result 5,363, Processing Time 0.028 seconds

Single-phase Active Power Filter Based on Rotating Reference Frame Method for Harmonics Compensation

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.94-100
    • /
    • 2008
  • This paper presents a new control method of single-phase active power filter (APF) for the compensation of harmonic current components in nonlinear loads. To facilitate the possibility of complex calculation for harmonic current detection of the single phase, a single-phase system that has two phases was constructed by including an imaginary second-phase giving time delay to the load current. The imaginary phase, which lagged the load current T/4 (Here T is the fundamental cycle) is used in the conventional method. But in this proposed method, the new signal as the second phase is delayed by the filter. Because this control method is applied to a single-phase system, an instantaneous calculation was developed by using the rotating reference frames synchronized to source-frequency rather than by applying instantaneous reactive power theory that uses the conventional fixed reference frames. The control scheme of single-phase APF for the current source with R-L loads is applied to a laboratory prototype to verify the proposed control method.

A Study on the Current & Load Unbalance Factor in using Linear & Nonlinear Load (선형 및 비선형 부하 사용시 전류 및 부하불평형률에 대한 연구)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1291-1296
    • /
    • 2017
  • Single-phase and three-phase load can be used together in 3-phase 4-wire system. Single-phase and three-phase loads can be classified as linear loads without harmonics and nonlinear with harmonics. Single-phase linear loads are linear loads such as lamps and heat, and single-phase nonlinear loads are power converters such as rectifiers. It is recommended that the distribution of loads in the 3-phase, 4-wire distribution lines be evenly distributed within a certain range. However, harmonic currents generated in a nonlinear load flow on the neutral line and affect the phase current magnitude. The difference in the magnitude of the individual phase current due to the influence of the harmonic current present in the neutral line can produce a difference in current and load unbalance. In this study, current unbalance ratio and load unbalance ratio which can occur when a combination of linear and nonlinear loads are applied to 3-phase 4-wire distribution line are calculated.

Analysis of Reduction Effect of Three Harmonic Currents by Zigzag Wiring of Single Phase Transformer (단상 변압기 지그재그 결선에 의한 3고조파 전류 저감 효과 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.99-104
    • /
    • 2017
  • The three-phase four-wire power distribution system can be used to supply power to single-phase and three-phase loads at the same time. There are linear loads and nonlinear loads as single-phase loads connected to each phase. The nonlinear load generates a harmonic current during the power energy conversion process. In particular, the single-phase nonlinear load has a higher proportion of generation of the third harmonic current than the harmonics of the other orders. In a three-phase four-wire system, the third harmonic current flows through the neutral wire to the power supply side, affecting the power supply side and the line. Furthermore, the magnitude of the current flowing in the neutral line can be higher than the current flowing in the individual phase. If the neutral current is higher than the phase current, the breaker may be blocked. Therefore, it is necessary to reduce the amount of current flowing in the neutral line by harmonics. There is a method of zigzag connecting a single phase transformer by a method of reducing 3 harmonic current. In this study, the method of reducing the magnitude of the three harmonic currents flowing through the zigzag wire by comparing the polarity and the negative polarity characteristics of the single phase transformer was compared through measurement and simulation.

three phase current reconstruction method applying predictive current in three shunt sensing PWM inverter (예측 전류를 적용한 3 션트 PWM 인버터의 전류 복원 기법)

  • Hong, Sung-Woo;Kim, Do-Yun;Won, Il-Kuen;Kim, Young-Real;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.99-100
    • /
    • 2016
  • In a AC motor used by three phase inverter, the phase current must be measured to control instantaneous torque. It is expensive to use current sensor for measuring current in low cost motor. So, shunt resistor is used to measure current. But, the method sensing the phase current using shunt resistor cannot perform the vector control in high speed because of the area that impossible to restore three phase current. In this paper, predictive current is proposed for reconstructing the current in the impossible current sensing area that reduce the current ripple in TSSI(Three shunt sensing inverter) for PMSM.

  • PDF

Rotor position detection of bifilar-wound hybrid stepping motors by phase current measurement (상전류 측정에 의한 복권형 하이브리드 스테핑 전동기의 회전자 위치 검출)

  • Kim, Kyu-Hui;You, Jeong-Bong;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.619-625
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by modeling the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. We show that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench (이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석)

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.184-189
    • /
    • 2022
  • In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

Analysis and Modeling of Parallel Three-Phase Boost Converters Using Three-Phase Coupled Inductor

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1086-1095
    • /
    • 2013
  • The main issue of parallel three-phase boost converters is reduction of the low- and high frequency circulating currents. Most present technologies concentrate on low frequency circulating current because the circulating current controller cannot mitigate the high frequency circulating current. In this paper, analytical approach of three-phase coupled inductor applied to parallel system becomes an important objective to effectively reduce the low- and high frequency circulating currents. The characteristics of three-phase coupled inductor based on a structure and voltage equations are mathematically derived. The modified voltage equations are then applied to parallel three-phase boost converters to develop averaged models in stationary coordinates and rotating coordinates. Based on the averaged modeling approach, design of the circulating current controller is presented. Simulation and experimental results demonstrate the effectiveness of the analysis and modeling for the parallel three-phase boost converters using three-phase coupled inductor.

Three Phase Current Reconstruction Method of Three Shunt Sensing 3-Phase Inverter by Predictive Current Technique (예측 전류 기법을 적용한 3-션트 전류검출 3상 인버터의 전류 복원 방법)

  • Choo, Kyoung-Min;Hong, Sung-Woo;Jang, Young-Hee;Won, Il-Kuen;Kim, Do-Yun;Wo, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The measurement of three-phase current is important to control the instantaneous torque of a interior permanent magnet synchronous motor(IPMSM) using a three-phase inverter. Therefore, shunt resistors are used in low-cost motor-driving systems to measure three-phase current instead of additional current sensors that are too expensive for these systems. However, in certain regions of a space vector plane, shunt resistors cannot reconstruct three-phase current in high-speed driving mode. In this paper, predictive current control is used to compensate for the three-phase current in those regions, which results in a reduction of current ripple in a three-shunt sensing inverter(TSSI) and torque ripple in IPMSM.

Current Control of Three-Phase PWM Rectifiers without Phase Current Sensors (상전류 센서없는 3상 PWM 3상 정류기의 전류제어)

  • Im, Dae-Sik;Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.123-129
    • /
    • 2000
  • This paper proposes a novel current control method of three-phase PWM rectifiers using estimated currents without phase current sensors. The phase currents are reconstructed from switching states of the rectifier and the measured dc output currents. To eliminate the calculation time delay effect of the microprosessor, the current at the next sampling instant are predicted by a predictive state observer and then are used for feedback control. Experimental results show that the control performance of the proposed system is almost the same as that of the phase current sensor-based system.

  • PDF

A Study on Development of Open-Phase Protector Having Leakage Current Generation and Incapable Operation Prevention at Open-Phase Accident (결상 시 누전전류 발생과 오동작 방지 기능을 갖는 결상보호기 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.182-187
    • /
    • 2015
  • In the three-phase power system, when any one-phase or two-phases is open-phase, the unbalanced current flows and the single-phase power supplies to three-phase loads. Specially, motor coil and transformer coil receive over-current. As a result, great damage as well as electrical fire can occur to the power system. In order to improve these problems, this paper proposes that an open-phase detection device is designed by a new algorithm using electric potential difference between the resultant voltage of neutral point and ground, and a control circuit topology of open-phase protector is composed of highly efficient semiconductor devices. It improves response speed and reliability. The control algorithm circuit also operates the cut-off of a conventional residual current protective device (RCD) which flows an enforced leakage current to ground wire at open-phase accident. Furthermore, time delay circuit is added to prevent the incapable operation of open-phase protector about instantaneous open-phase not open-phase fault. The time delay circuit improves more reliability.