• Title/Summary/Keyword: current mode logic driver

Search Result 5, Processing Time 0.023 seconds

A Current-Mode Multi-Valued Logic Interface Circuits for LCD System (LCD 시스템을 위한 Current-Mode Multi-Valued Logic 인터페이스 회로)

  • Hwang, Bo-Hyoun;Shin, In-Ho;Lee, Tae-Hee;Choi, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.84-89
    • /
    • 2013
  • In this paper, we propose interface circuits for reducing power consumption and EMI when sequences of data from LCD controller to LCD driver IC by transmitting two bit data during one clock period. The proposed circuits are operated in current mode, which is different from conventional voltage-mode signaling techniques, and also employ threshold technique of Modified-LVDS(Low Voltage Differential Signaling) method. We have simulated the proposed circuits using H-SPICE tool for performance analysis of the proposed method. The simulation results show that the proposed circuits provide a faster transmission speed and stronger noise immunity than the conventional LVDS circuits. It might be suitable for the real-time transmission of huge image data in LCD system.

Cost-Efficient and Automatic Large Volume Data Acquisition Method for On-Chip Random Process Variation Measurement

  • Lee, Sooeun;Han, Seungho;Lee, Ikho;Sim, Jae-Yoon;Park, Hong-June;Kim, Byungsub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.184-193
    • /
    • 2015
  • This paper proposes a cost-efficient and automatic method for large data acquisition from a test chip without expensive equipment to characterize random process variation in an integrated circuit. Our method requires only a test chip, a personal computer, a cheap digital-to-analog converter, a controller and multimeters, and thus large volume measurement can be performed on an office desk at low cost. To demonstrate the proposed method, we designed a test chip with a current model logic driver and an array of 128 current mirrors that mimic the random process variation of the driver's tail current mirror. Using our method, we characterized the random process variation of the driver's voltage due to the random process variation on the driver's tail current mirror from large volume measurement data. The statistical characteristics of the driver's output voltage calculated from the measured data are compared with Monte Carlo simulation. The difference between the measured and the simulated averages and standard deviations are less than 20% showing that we can easily characterize the random process variation at low cost by using our cost-efficient automatic large data acquisition method.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

Low Voltage Swing BUS Driver and Interface Analysis for Low Power Consumption (전력소모 감소를 위한 저 전압 BUS 구동과 인터페이스 분석)

  • Lee Ho-Seok;Kim Lee-Sup
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.10-16
    • /
    • 1999
  • This paper describes a low voltage swing bus driver using FCSR(Feedback Control Swing voltage Reduction) which can control bus swing voltage within a few hundred of mV. It is proposed to reduce power consumption in On-chip interface, especially for MDL(Merged DRAM Logic) architecture wihich has wide and large capacitance bus. FCSR operates on differential signal dual-line bus and on precharged bus with block controlling fuction. We modeled driver and bus to scale driver size automatically when bus environment is variant. We also modeled coupling capacitance noise(crosstalk) of neighborhood lines which operate on odd mode with parallel current source to analysis crosstalk effect in the victim-line according as voltage transition in the aggressor-line and environment in the victim-line. We built a test chip which was designed to swing 600mV in bus, shows 70Mhz operation at 3.3V, using Hyundai 0.8um CMOS technology. FCSR operate with 250Mhz at 3.3V by Hspice simulation.

  • PDF

Design of LED Driving Circuit using Voltage Controlled Ring Oscillator and Lighting Controller (전압제어 링 발진기를 이용한 LED구동회로 및 조명제어기설계)

  • Kwon, Ki-Soo;Suh, Young-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • An LED driving and control circuit has been developed. The LED driver has a new PWM circuit for current control of LED columns with dimming, current and thermal control, and communication functions. The PWM circuit is composed of two ring oscillator and one counter which can be constructed using basic digital logic components. In addition, it has the functions of remote control mode such as ON, OFF, emergency and power saving modes by the serial communication. The PWM generator and control circuit have been designed and fabricated 0.35[${\mu}m$] Magnachip/Hynix digital IC fabrication process. The LED driving and control board using the developed chip is fabricated and tested successfully.