• Title/Summary/Keyword: current limiting characteristic

Search Result 66, Processing Time 0.035 seconds

Saturation Characteristic of Iron Core Dependent on Fault Angle in a Flux-Lock Type SFCL (자속구속형 초전도 사고전류제한기의 사고각에 따른 철심의 포화특성)

  • Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.29-34
    • /
    • 2007
  • The fault current limiting characteristics of a flux-lock type superconducting fault current limiter(SFCL) according to fault angles were investigated. From the electrical equivalent circuit with the magnetization branch, the inner magnetic flux of this SFCL due to fault angles was induced and its effect on the limited fault current was analyzed. From the fault current limiting experiments, the exciting current, which described the saturation of the iron core, was calculated and its dependence on the fault angle was analyzed. Before the fault happened, the exciting current did not happen, that it kept zero value. However, after the fault happened, the exciting current flowed and, the exciting current in case of the additive polarity winding showed higher value than for the case of the subtractive polarity winding. The analysis results were compared with the experimental ones, and experimental results agreed with the analysis ones.

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.

Characteristic Analysis of 1200V Insulated Gate Bipolar Transistor Devices (1200V급 절연게이트 바이폴라 트랜지스터 특성 해석)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Kang, In-Ho;Joo, Sung-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.212-213
    • /
    • 2008
  • This paper describes the analysis of the device characteristics of the NPT type 1200V Insulated gate Bipolar Transistor. In case of NPT type IGBT devices, optimized n-epi layer thickness and concentration is important to obtain low on-state voltage and breakdown voltage characteristics. In this paper, we analyzed on-state and off-state characteristics of NPT type IGBT. Breakdown voltage of designed IGBT was higher than 1200V when we optimized Field Limiting Ring structures. And also, on-state voltage characteristics was shown less then 2.5V at 25A of drain current.

  • PDF

The Effects of Design Parameter to Interrupt Optimally for High Voltage CL Fuse (고압한류퓨즈의 최적 차단을 위한 설계변수의 영향)

  • Lee, Se-Hyeon;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.185-191
    • /
    • 1999
  • The fuse used in the high voltage distribution line often fails due to the active ionization caused by the strong electric field at fuse terminal. To suppress the ionization at the high voltage and high capacity current limiting fuse, the particle size and compactness of silica sand, the design, length, notch number and material of element, the diameter and length of fuse body must be considered carefully. However, these are not many proper which is treated with the inherent interrupting characteristics from many parameters at present. Because of these reasons, time and effort are needed to develop the new type fuse by the fuse designers in relation with the inherent characteristics from each of parameters. In this paper we choose 7 parameters with weight value based on study and experimentation and analyzed the characteristics of arcing period. In addition, we proposed the experimental method to experimentation and analyzed the characteristics of arcing period. In addition, we proposed the experimental method to extract the optimal design parameters with minimal effort as related the mutual effect from each of the parameters.

  • PDF

An analysis of harmonic components of current in the power system (전력계통 고주파 전류의 해석)

  • 우형주
    • 전기의세계
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 1966
  • The harmonic components of a current in the power system have been known to be harmful to the sound operation of the system. Their occurrence is mainly due to the nonlinear characteristics of magnetic materials which are used in the system. This paper has, therefore, numerically analyze the harmonics from the relation between the magnetic characteristic curve and the harmonic components of a current in the R-L-C circuit. It also has suggested a new method of calculating the magnitudes and phase angles of the harmonic components by means of approximate formulas derived here. The method is expected to apply to the determination of harmonics-limiting conditions in case of the design of such power equipments as transformer, reactor and so on.

  • PDF

Analysis and Design of the In-Rush Current Protection Circuit for SSPA Power Supply (SSPA용 전원공급기의 돌입전류 보호회로 분석 및 설계)

  • Park, Sang-Hyun;Park, Dong-Chul;Kim, Dae-Kwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.5-11
    • /
    • 2008
  • Recently developed radars use the solid-state power amplifier to amplify the RF signal. The stability of RF signal directly depends on that of the electric power. So the stable and reliable electric power should be needed. When the electric power switch is tuned on for the first time in order to operate the radar system, the in-rush current is generated because of the capacitive characteristic. The excess in-rush current breaks the element. Therefore, the analysis about the in-rush current to design the electric power system is necessary. In this paper, modeling and simulation on the whole power system is carried out and the necessity of limiting the in-rush current is verified. After the analysis, the circuit to limit the in-rush current is designed and examined to verify the analysis. The circuit is good enough to limit the in-rush current.

Recovery Characteristics of SFCL According to the Turn's Variation (턴수 변화에 따른 초전도 전류제한기의 회복특성 분석)

  • Han, Tae-Hee;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Hwang, Jong-Sun;Choi, Myoung-Ho;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.184-185
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio between two coils. Since the recovery characteristics of a superconducting element m the flux-lock type SFCL were dependent on the turns ratio between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. When the applied voltage and load impedance were same, the recovery time of the superconducting element was 0.32sec in case that the turn's ratio between the primary and secondary windings was 63:21. In the meantime, when the turn's ratio of secondary winding increased to 3 times, the recovery time became longer to 0.58sec.

  • PDF

An Analysis on the Current Limiting Characteristic of Superconducting Fault Current limiter with Bypass Reactor (보조 선로리액터를 구비한 초전도 한류기의 한류 특성 해석)

  • Chang, Ki-Sung;Jang, Jae-Young;Kim, Young-Jae;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.832_833
    • /
    • 2009
  • 본 연구는 과거에 개발 되었었던 보조 선로 리액터를 구비한 초전도 한류기에 대한 것이다. 과거의 연구에서는 BSCCO선재와 YBCO coated condcutor (YBCO CC) 선재를 사용하여 실험적으로 한류특성에 대하서 연구 하였다 [1]. BSCCO 선재는 유도형으로 권선되어 정상 시에 저항은 작지만 인덕턴스 성분이 존재하는 보조 선로 리액터의 역할을 수행하였고 YBCO CC 선재는 무유도형으로 권선되어 스위치의 역할을 수행하였다. 두 개의 권선은 병렬로 연결되어 정상 시에는 전류가 YBCO CC 선재로 통전되다가 사고가 발생하면 YBCO CC 선재의 저항으로 인해서 BSCCO 선재로 통전되는 형태로 동작하였다. 본 연구에서는 BSCCO 선재의 보조 선로 리액터 부분을 초전도체가 아니라 일반 상전도체를 적용하여 스위치와 보조 선로 리액터의 조합에 변화를 주면서 한류 특성에 대한 시뮬레이션을 수행하였다.

  • PDF

Improvement of Simultaneous Quench Characteristic of Flux-Lock Type Superconducting Fault Current Limiters Through Its Series Connection (자속구속형 초전도 사고전류 제한기의 직렬연결을 통한 동시 퀜치 특성 향상)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.102-106
    • /
    • 2007
  • To apply the flux-lock type superconducting fault current limiter(SFCL) into power system, its current and voltage ratings are required to increase. Especially, in case of series connection of SFCLs, the countermeasure for simultaneous quenches must be considered. The structure, which each flux-lock type SFCL unit was wound in series on the same iron core, can induce the simultaneous quench of superconducting elements. Through the fault current limiting experiment for the suggested structure, it was confirmed that the even voltage burden among the superconducting elements comprising SFCLs could be made.

The Study on a sensitive current limiting breaking device using RF Sputtering (RF Sputtering을 이용한 전류 민감성 차단 디바이스에 관한 연구)

  • Lee, S.H.;Jeong, K.H.;Park, D.K.;Kim, Y.L.;Lee, J.C.;Koo, K.W.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1088-1092
    • /
    • 1995
  • In this paper, we evaluated the sputter-deposited Cr/Cu thin film fuses on $Al_2O_3$ substrates by the adhesive, breaking and repetitive over-current test as a function of temperature on them. Each Cr and Cu was deposited $1700{\pm}300{\AA},\;3700{\pm}300{\AA}$ using RF sputtering unit. The electroplated Cu of $25{\mu}m$ thickness was added in order to make sensitive thin film fuse of the normal current 15[A]. The adhesive strength and the number of repetition were Increasing and then decreasing with the temperature. The maximum adhesive strength of over $9kgf/9mm^2$ was obtained at $400^{\circ}C$. In the breaking test, the post-arc time characteristic was better than any other factor.

  • PDF