• Title/Summary/Keyword: current distribution

Search Result 5,507, Processing Time 0.051 seconds

The Initial Magnetic Field Decay of the Superconducting Magnet in the Persistent Current Mode (초전도자석의 영구전류모드 운전시 초기자장감쇠)

  • 배준환;심기덕;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 2000
  • this paper deals with the initial magnetic field decay for a large scale superconducting magnet e.g. NMR/MRI magnet. The high resolution image can not be obained during the periods of the initial field decay. It is known that all superconducting materials have the property of diamagnetism. This diamagnetism is usually explained with the concept of screening current. We assumed that the existence of the screening currebt. we assumed that the existence of the screening current makes the current distribution in the superconducting wire non-uniform. And the initial magnetic field decay is caused steady current state in the view of its pattern. The initial magnetic field decay is caused by the change of the current distribution between the energizing state and persistent current mode. in this paper the theoretical analysis for the current distributions has been introduced for each state. The experiments have been carried out to verify transport currents in order to veperiments, it small at the higher transport current.

  • PDF

Analysis on the Operational Characteristic between the Protective devices and Superconducting Fault Current Limiter with a Peak Current Limiting Function in the Power Distribution System (피크전류 제한 기능을 갖는 초전도한류기의 계통 적용에 따른 보호기기간 동작특성 분석)

  • Cho, Yong-Sun;Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, the operational characteristics due to the introduction of the superconducting fault current limiter(SFCL) with a peak current limiting function were analyzed in the power distribution system. The parallel structure of the superconducting element can operate the peak current limiting function depending on the transient amplitude of fault current. We studied the operating characteristics of the introduction of the SFCL with a peak current limiting function in the power distribution system. Furthermore, we were analyzed between the SFCL with a peak current limiting function and the protection devices in the power distribution system, through the short circuit experiments.

Proposition of Improved Neutral Grounding Method and Analytical Evaluation on Practicality in Underground Distribution System (지중배전시스템의 개선된 중성점 접지방식 제안과 실효성에 대한 해석적 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Jang, Seong-Whan;Kim, Yong-Kap;Kwon, Shin-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.479-485
    • /
    • 2011
  • In 22.9kV underground distribution system, power cables are provided with multiple-point ground in which each neutral line of the distribution cable(A, B, C phases) and three-wire common grounded at every connecting section. But in such grounding methods, circulating current flows between the neutral wire and grounding wire. And power loss due to circulating current also occurs in all conductors. Therefore it is getting necessary reducing circulating current in underground distribution system. This paper presents improved grounding method to overcome such problems. The proposed grounding method eliminates circulating current in the neutral line effectively and is verified that there is no electrical problem or any ineffectiveness of operating protection systems. These analyses are carried out by EMTP/ATPDraw to compare each grounding methods in steady and transient state. This grounding method suggested in this paper can be applied on real distribution system after field tests considering elimination of circulating current was implemented.

Harmonics Modelling for Distribution System (배전시스템 고조파 모델링에 관한 연구)

  • Han, Hyeng-J.;Wang, Yong-P.;Chong, Hyeng-H.;Sung, Byung-H.;Park, Hee-C.;Park, In-P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.205-207
    • /
    • 2005
  • In this paper, the Point of Common Coupling (PCC) is selected to analyze harmonic characteristic of distribution system by IEC 61000 - 3 - 6 in Electromagnetic Compatibility(EMC). Harmonic voltage and current were measured at the PCC of real distribution system. Harmonic distribution, nonlinear load component and Total Harmonic Distortion(THD) were verified by measurement. The effective and accurate modelling of real distribution system were proved through a analysis of harmonic impedance, voltage and current in steady-state. Harmonic transfer characteristic in distribution system were summarized and investigated through a analysis of harmonic voltage and harmonic current in harmonic current source.

  • PDF

Theoretical Analysis of Secondary Current Distributions for Electrode with a Projection Part in Electroplating System (돌출부를 지닌 전극의 전기도금시스템에 대한 이론적 이차 전류분포 해석)

  • Sohn, Tai-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • Theoretical calculations for the secondary current distributions for the electrode with a projection part in electroplating were performed. Two kinds of electrodes were considered. One is a electrode with the overall conducting surfaces(Case 1) and the other is an electrode in which only a projection part has a conducting surface(Case 2). The effects of applied potential, the ratio of ion exchange current to conductivity, $\xi$ and the aspect ratio on the current distribution were examined. The increase of applied current or the value of $\xi$ decreased the uniformity of current distribution. The small value of aspect ratio resulted the more uniform current distribution and Case 2 showed the better uniformity than Case 2. When this model was applied into an electrode with various projection parts, the local current distribution along the electrode surface were obtained successfully. In this case, the decrease of $\xi$ also increase the uniformity of current distribution as seen previously.

Current Limiting Characteristics due to Application Location of a Superconducting Fault Current Limiter in a Simulated Power Distribution System (모의배전계통에 초전도한류기의 도입위치에 따른 전류제한 특성)

  • You, Il-Kyoung;Kim, Jin-Seok;Kim, Myoung-Hoo;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.90-95
    • /
    • 2009
  • The application of a large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer‘s impedance causes the short-circuit current of the power distribution system to increase and thus, the higher short-circuit current exceeds the cut-off ratings of the protective devices such as a circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from the higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. However, the current limiting effect of SFCL including its bus voltage drop compensation depends on SFCL's application location in a distributed power system. In this paper, the current limiting and the bus-voltage drop compensating characteristics of the SFCL applied into a power distribution system were studied. In addition, the quench and the recovery characteristics of the SFCLs in each location of the power distribution system were compared each other.

A Study on the Protection of Power Distribution System with the Distributed Generator and Superconducting Fault Current Limiter (분산전원이 도입된 배전계통에 초전도한류기 적용시 계통보호 시스템의 영향에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1226-1231
    • /
    • 2012
  • The demand for electrical power has been significantly increased to satisfy the customers. As a result, a power distribution system have been advanced by power system's interconnection, installation of distributed generator(DG) and so on. The improvable power distribution system included the problem of increasable fault current. Superconducting fault current limiter (SFCL) is one of the solutions to limit a fault current. Therefore, to solve the problem of fault current by SFCL, simulation was progressed and the simulation used a PSCAD/EMTDC.

The Estimation of Rail Current Distribution According to Feeding Scheme (급전방식에 따른 레일전류 분포 예측)

  • Lee, C.M.;Han, M.S.;Jung, H.S.;Kim, J.R.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1619-1621
    • /
    • 2005
  • AC electric railway feeding system classifies into three groups such as normal, TIE and PP feeding method. If the feeding scheme of ac electric railway is changed, current distribution flowing through the line is also modified. And if the current distribution is altered according to the feeding scheme, returned tendency through rail load current or fault current of the train is changed. So the investigation about error correcting method of protective relay is needed considering feeding scheme. In this paper prior to error correcting of protective relay, through interpreting feeding circuit, changes in current distribution of the rail in accordance with feeding would be predicted and analyzed.

  • PDF

Analysis on Bus Voltage Sag in Power Distribution System with SFCL according to Interconnected Locations of Small DG (초전도 한류기 적용시 소형 분산전원시스템의 연계 위치에 따른 배전계통의 전압강하 분석)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.210-215
    • /
    • 2013
  • This paper analyze the bus voltage sags in the power distribution system with a small scale cogeneration system when the superconducting fault current limiter was introduced. Among the solutions to decrease the short-circuit current considering the locations of the small scale cogeneration system, the superconducting fault current limiter (SFCL) has been announced as one of the promising methods to reduce the fault current because the installation of the small scale cogeneration system which increases the short-circuit current. According to the application locations of the small scale cogeneration system in a power distribution system, it has caused the variations of voltage sag and duration which depends on the change of the short-circuit current, which can make the operation of the protective device deviate from its original set value when the fault occurs. To investigate the voltage sag when a SFCL was applied into a power distribution system where the small scale cogeneration system was introduced into various locations, the SFCL, small scale cogeneration system, and power system are modeled using PSCAD/EMTDC. In this paper, the effects on voltage sags are assessed when the SFCL is installed in power distribution system with various locations of the small scale cogeneration system.

Dependence of Subthreshold Current for Channel Structure and Doping Distribution of Double Gate MOSFET (DGMOSFET의 채널구조 및 도핑분포에 따른 문턱전압이하 전류의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, dependence of subthreshold current has been analyzed for doping distribution and channel structure of double gate(DG) MOSFET. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. Since DGMOSFETs have reduced short channel effects with improvement of current controllability by gate voltages, subthreshold characteristics have been enhanced. The control of current in subthreshold region is very important factor related with power consumption for ultra large scaled integration. The deviation of threshold voltage has been qualitatively analyzed using the changes of subthreshold current for gate voltages. Subthreshold current has been influenced by doping distribution and channel dimension. In this study, the influence of channel length and thickness on current has been analyzed according to intensity and distribution of doping.