• Title/Summary/Keyword: current control loop

Search Result 642, Processing Time 0.024 seconds

ADVANCED TEST REACTOR TESTING EXPERIENCE - PAST, PRESENT AND FUTURE

  • Marshall Frances M.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.411-416
    • /
    • 2006
  • The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the comer 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

Modeling and Line Current Control of a Three Phase Voltage Source Inverter using an LCL filter in a Balanced Delta Circuit (LCL 필터를 사용하는 삼상 전압형 인버터의 모델링과 계통전류 제어)

  • Lee, Sang-In;Lee, Kui-Jun;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.18-20
    • /
    • 2007
  • 3상 계통 연계 형 인버터 시스템은 낮은 THD를 가지는 계통 전류를 공급해주기 위해 LCL 필터를 사용한다. LCL 필터를 사용하는 가장 큰 장점은 낮은 스위칭 주파수에서도 만족할 만한 수준의 THD를 가지는 계통 전류를 생성시킬 수 있다는 점이다. 반면에, 단점은 LCL필터를 포함하는 계통 연계 형 인버터 시스템의 전달함수에 하나의 공진 극점이 존재한다는 점이다. 이것은 계통 전류 제어 loop에서, 안정성 문제에 영향을 미친다. 정확한 제어를 위해서 시스템의 전달함수는 필수적이다. 여기서 중요한 점은 많은 저자들이 시뮬레이션과 실험을 할 때, 중성점이 없는 회로에서 행하지만 회로 해석을 할 때에는 중성점이 있는 회로에서 해석을 한다는 점이다. 그래서 우리는 등가 델타회로에서 LCL 필터를 포함한 전체 시스템의 수학적인 모델을 제안한다. 이 모델은 모든 인덕터와 커패시터의 기생 저항을 고려한다. 또한 이 논문은 계통 전류를 제어하기 위한 제어기의 해석적인 설계 절차를 포함한다. 제안한 수학적인 모델을 입증하기 위해, PSIM을 통한 시뮬레이션과 Simulink를 통한 시뮬레이션 결과를 비교하였다.

  • PDF

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

Programming of adaptive repair process chains using repair features and function blocks

  • Spocker, Gunter;Schreiner, Thorsten;Huwer, Tobias;Arntz, Kristian
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • The current trends of product customization and repair of high value parts with individual defects demand automation and a high degree of flexibility of the involved manufacturing process chains. To determine the corresponding requirements this paper gives an overview of manufacturing process chains by distinguishing between horizontal and vertical process chains. The established way of modeling and programming processes with CAx systems and existing approaches is shown. Furthermore, the different types of possible adaptions of a manufacturing process chain are shown and considered as a cascaded control loop. Following this it is discussed which key requirements of repair process chains are unresolved by existing approaches. To overcome the deficits this paper introduces repair features which comprise the idea of geometric features and defines analytical auxiliary geometries based on the measurement input data. This meets challenges normally caused by working directly on reconstructed geometries in the form of triangulated surfaces which are prone to artifacts. Embedded into function blocks, this allows the use of traditional approaches for manufacturing process chains to be applied to adaptive repair process chains.

There-Phase Voltage-Source Soft-Switching Inverter with Auxiliary High Frequency Transformer Linked Power Regeneration Resonant Snubbers

  • Hattori, Hiroshi;Nakaoka, Mutsuo;Sakamoto, Kenji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a prototype of the auxiliary resonant commutated snubber circuit(ARCS) with a high frequency transformer power regeneration loop is described for voltage source type sinewave inverter system. This is a new soft switching topology developed for three phase voltage source soft-switching inverter, active power filter and reactive power compensator has significant advantage of current rating reduction for auxiliary active switching devices. In addition, this paper presents a novel prototype of voltage-source soft switching space vector-modulated inverter with ARCS mentioned above, which is more suitable and acceptable for high-power utility interactive power conditioning, along with a digital control scheme. The steady-state operating analysis of ARCS has the remarkable features and the practical design procedure of this resonant snubber are illustrated on the basis of computer simulation analysis. The operating performance evaluations in the steady-state of this three phase voltage source soft switching inverter are discussed and compared with the three phase voltage source hard switching inverter.

  • PDF

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

Seamless Transfer of Single-Phase Utility Interactive Inverters with a Synchronized Output Regulation Strategy

  • Xiang, Ji;Ji, Feifan;Nian, Heng;Zhang, Junming;Deng, Hongqiao
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1821-1832
    • /
    • 2016
  • This study presents a strategy using the synchronized output regulation method (SOR) for controlling inverters operating in stand-alone and grid-connected modes. From the view point of networked dynamic systems, SOR involves nodes with outputs that are synchronized but also display a desirable wave shape. Under the SOR strategy, the inverter and grid are treated as two nodes that comprise a simple network. These two nodes work independently under the stand-alone mode. An intermediate mode, here is named the synchronization mode, is emphasized because the transition from the stand-alone mode to the grid-connected mode can be dealt as a standard SOR problem. In the grid-connected mode, the inverter operates in an independent way, in which the voltage reference changes for generalized synchronization where its output current satisfies the required power injection. Such a relatively independent design leads to a seamless transfer between operation modes. The closed-loop system is analyzed in the state space on the basis of the output regulation theory, which improves the robustness of the design. Simulations and experiments are performed to verify the proposed control strategy.

Characteristics of Time-Changing Electric and Magnetic Fields at a High Voltage Laboratory (고전압 실험실에서 시변성 전자계의 특성)

  • 이복희;이경옥;안창환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.83-93
    • /
    • 1997
  • This paper deals with measurements and evaluation of the time-changing electric and magnetic fields at a high-voltage laboratory. The electromagnetic disturbances originate mainly from ground faults and on/off operations of electric power equipments. The electronic circuits and control devices are very sensitive to electromagnetic interferences. It is necessory to evaluate the levels of interferences for a given electromagnetic environment. The electric field was observed by the electric field sensor having the bandwidth of the range from 40 Hz to 200 MHz, and the time-changing magnetic field was measured by the loop sensor of which the output is directly proportional to the incident signal. Also, the frequency components of the time-changing electric and magnetic fields induced by an oscillatory transient current and a chopped impulse voltage were analyzed by terms of the fast Fourier transformation, and those give the information about the levels of the electromagnetic interferences and the design of the electromagnetic shielding enclosures.

  • PDF

Parameter Identification and Error Analysis of Approximation method for Linear motors (리니어 모터의 매개변수 추정과 근사화의 오차 분석)

  • Nam, Jae-Wu;Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.61-68
    • /
    • 2012
  • In this paper, a closed-loop sensorless stroke control system for a linear compressor has been designed. In order to estimate the piston position accurately, motor parameters are identified as a function of the piston position and the motor current. These parameters are stored in ROM table and used later for the accurate estimation of piston position. The identified motor parameters are approximated to the several surface functions in order to decrease memory size. They can also be divided into 2 or 4 subsections to decrease identification errors. The effect of the order of surface functions and division of subsections on identification errors and computation time is analyzed.

Partial Discharge of Ignition Coil for Automotive (자동차 점화코일의 부분방전특성)

  • Shin, Jong-Yeol;Kim, Tag-Yong;Byun, Du-Gyoon;Kim, Weon-Jong;Lee, Soo-Won;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.239-242
    • /
    • 2003
  • 자동차 점화장치는 전원으로부터 공급된 낮은 전압을 점화코일을 통하여 연소실의 혼합기를 연소시키기에 충분한 고전압을 발생시키는 장치이며, 점화장치의 핵심은 점화코일이다. 이 점화코일은 절연성능이 우수한 절연재료가 사용되지만 고전압의 발생으로 점화코일 내부에서 일어나는 전기적 열화로 인해 누설전류가 흐르게 되어 전기적 고장을 초래할 수 있다. 이로 인하여 절연재료의 수명은 단축되며, 또한 점화코일에 전류가 흐름으로써 코일 내부에서 발생하는 온도변화에 따른 절연열화로 점화코일의 성능이 저하될 수 있다. 따라서 본 연구에서는 점화코일에 사용되고 있는 절연재료에 전압이 인가될 때 발생할 수 있는 비파괴검사의 일종인 부분방전 측정을 통하여 전압변화에 따른 에폭시 성형 점화코일의 위상각($\Phi$) - 방전전하량(q) - 발생빈도수(n)의 특성 변화를 조사하고 분석함으로써 점화코일의 수명을 예측하여 자동차 점화장치의 성능진단과 정보제공을 자동차 전기장치의 발전에 도움이 될 것을 기대하며, 온도상승에 따른 점화코일의 부분방전 특성을 실험하고 분석하였다.

  • PDF