• 제목/요약/키워드: current capacity

검색결과 2,588건 처리시간 0.027초

멀티케이블을 이용한 초전도 전력케이블의 구성에 관한 연구 (A Study on the Composition of Superconducting Power Cable Using the Multi-cable)

  • 최석진;이상진;심기덕;조전욱;이수길;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.42-46
    • /
    • 2010
  • The HTS power cable is composed of 2 layers for transmission and 1 layer for shield. The superconducting tapes of transmission layers and shield layer are wound in a cylindrical shape with a winding pitch. The radius of cylinder and the number of superconducting tapes are decided considering to the transmission current capacity and the critical current of superconducting tapes. The increasement of transmission current capacity will increase in volume of HTS cable system. In this paper, the composition method of supercondcuting power cable using the multi-cable is presented. The coated conductor tape can be wound on the smaller cylinder because it has the smaller critical bending diameter than the BSCCO tape. A small-scale cable was composed using the coated conductor tapes and a multi-cable is composed using a small-scale cable considering to transmission current capacity. Even increase of transmission current capacity, this method has advantage that the HTS superconducting power cable can be composed easily. The 22.9 kV and 154 kV superconducting power cable was composed using the presented method.

Study on Application of Superconducting Fault Current Limiter Considering Risk of Circuit Breaker Short-Circuit Capacity in a Loop Network System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1789-1794
    • /
    • 2014
  • This paper suggests an application method for a superconducting fault current limiter (SFCL) using an evaluation index to estimate the risk regarding the short-circuit capacity of the circuit breaker (CB). Recently, power distribution systems have become more complex to ensure that supply continuously keeps pace with the growth of demand. However, the mesh or loop network power systems suffer from a problem in which the fault current exceeds the short-circuit capacity of the CBs when a fault occurs. Most case studies on the application of the SFCL have focused on its development and performance in limiting fault current. In this study, an analysis of the application method of an SFCL considering the risk of the CB's short-circuit capacitor was carried out in situations when a fault occurs in a loop network power system, where each line connected with the fault point carries a different current that is above or below the short-circuit capacitor of the CB. A loop network power system using PSCAD/EMTDC was modeled to investigate the risk ratio of the CB and the effect of the SFCL on the reduction of fault current through various case studies. Through the risk evaluations of the simulation results, the estimation of the risk ratio is adequate to apply the SFCL and demonstrate the fault current limiting effect.

초전도(신)전력계통 고장전류 분석 및 병렬한류시스템 (A fault current analysis and parallel FCL scheme on superconducting new power system)

  • 윤재영;이승렬;김종율
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.49-53
    • /
    • 2006
  • This paper specifies the new power supply paradigm converting 154kV voltage level into 22.9kV class with equivalent capacity using superconducting rower facilities and analyze the fault current characteristics with and without HTS-FCL (High Temperature Superconducting-Fault Current Limiter). Superconducting new power system is the power system to which applies the 22.9kV HTS cable in parallel to HTS transformer and HTS-FCL with low-voltage and mass-capacity characteristics replacing 154kV conventional cable and transformer. The fault current of superconducting new power system will increase greatly because of the mass capacity and low impedance of HTS transformer and cable. This means that the HTS-FCL is necessary to reduce the fault current below the breaking current of circuit breaker. This paper analyze the fault current and suggests the parallel HTS-FCL scheme complementing the inherent problem of HTS-FCL, that is recovery after quenching is impossible within shorter than a few seconds.

전력계통에서의 초전도 한류기 설치를 위한 기초적 연구 (Preliminary investigation of a proposed site for SFCL installation in the power systems)

  • 김용학;윤용범;최효상;현옥배
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권2호
    • /
    • pp.38-41
    • /
    • 2002
  • We have conducted Preliminary investigation to propose a suitable site for superconducting fault current limiter (SFCL) installation in the KEPCOs 154kV grid This investigation limited the application SFCL to the bus-tie position of the grid in the Seoul area. First, we calculated maximum Potential fault current for all substations. Then, among substations where the fault current exceeds the CB capacity, rye selected two substations where buses are being operated untied. For the selected two. S S/S and M S/S. fault currents at the M S/S were estimated to be 22.5㎄ and 24.3㎄ for two buses untied respectively, but 44.2㎄ if buses were tied. Simulation using a hypothetical SFCL of 5 Ohm impedance showed that it controlled the fault current up to 20. 1㎄ for bus-tie Position, 28.4㎄ and 29.9㎄ for both buses. respectively, each of which are under the capacity of the currently installed 31.5㎄ GIS. For both substations a SFCL with 5 Ohm impedance successfully controls the fault current under the CB capacity, and 10 Ohm SFCL may be recommendable to maximize the SFCL effect.

저항접지 시스템에서 지락사고시 CLR과열 소손방지를 위한 GPT 정격용량의 적정성 연구 (Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter)

  • 신호전;김진석;박유환;김재철;조만영
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.503-508
    • /
    • 2012
  • Among the high distribution voltage consumers, high-capacity consumers are often applying the grounding resistance method in order to overcome demerits such as erroneous operation of the ground reply or potential increase in the battery at the accident of the isolated neutral system. In this paper, to prevent damage to CLR and GPT in the delay to block the breakdown in the resistance grounded neutral system, this study aims to provide a proper suggestion for continuous rating capacity of GPT to check the appropriateness of CLR size and reduce GPT burden. Thereupon, this study comparatively analyzes CLR current applied in general GPT and the current gained when CLR demanded in the system is used and analyzes the simulated system through simulation using PSCAD/EMTDC in order to suggest GPT's proper continuous rating capacity.

Development of innovative superconducting DC power cable

  • Matsushita, Teruo;Kiuchi, Masaru
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2017
  • It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

海水中 Al-Zn-In 合金陽極의 分極特性에 미치는 Ca-Si 添加의 影響 (Influence of Ca-Si Addition on Anodic Polarization Chgaraqcteristics of Al-Zn-In Anodes)

  • 서창제
    • 한국표면공학회지
    • /
    • 제12권1호
    • /
    • pp.3-10
    • /
    • 1979
  • Many excellent Al-Zn-In anode have been developed up to the present. But for the purpose of the better performance of Al-Zn-In anodes in sea water the effect of calcium silicon addition on anodic polarization and current capacity of Al-Zn-In anodes was measured and analysed in sea water and artificial sea water. The results and conclusions obtained are summarized as follows. 1) Being compared with Al-Zn-In anodes, Al-Zn-In anodes containing 0.05% calcium silicon had superior characteristics in both anodic polarization and current capacity. 2) Corrosion patterns of the anodes containing calcium silicon were much more uniform than those of Al-Zn-In anodes. 3) In this experiment the most useful anode was Al-4% Zn-0.03% In-0.05% (Ca-Si). It had a capacity of 2.60Amp-hr of current/g and a voltage of 1.13(SCE reference) at anodic current density 1,000 4{\mu}A/cm^2$.

  • PDF

초전도 코일 적용으로 인한 DC 차단기의 차단 용량 증대 (Extension of Cut-off Capacity of DC Circuit Breaker due to Superconducting Coil Application)

  • 최혜원;최효상
    • 전기학회논문지
    • /
    • 제68권4호
    • /
    • pp.593-597
    • /
    • 2019
  • We proposed a current Interruption type DC superconducting circuit breaker(I-DC SCB), a protection device that combines the current limiting technology of a superconductor with the cut-off technology of circuit breaker. Unlike existing protective devices, the current I-DC SCB is a device that combines two protection functions, notably improving failure probability and operational reliability. It is also applicable to all DC systems, such as HV, MV, and LVDC, due to the ease in capacity increase. The 100 kV I-DC SCB was designed after taking into account the actual power system conditions, followed by an analysis of the transient characteristics and the breaking range of the limiter. The results of the analysis showed that the I-DC SCB had a fault current limit of about 75% at the rated voltage, and completed the cut-off operation within about 20 ms.

다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산 (Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length)

  • 이지광;차귀수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권1호
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

DEA 기법을 이용한 낙지통발어업의 어획능력 측정 (Fishing capacity assessment of the octopus coastal trap fishery using data envelopment analysis(DEA))

  • 김도훈;안희춘;이경훈;황진욱
    • 수산해양기술연구
    • /
    • 제43권4호
    • /
    • pp.339-346
    • /
    • 2007
  • Estimating fishing capacity is one of current hot issues in the international fisheries. It is because that increased fishing capacity has caused not only fish stocks to be reduced, but also additional fishing costs to be incurred without additional incomes, which resulted in decrease of economically viability of fisheries. In order to solve this problem, FAO adopted 'the International Plan of Action for the Management of Fishing Capacity' in 1999 and recommended that member countries to measure fishing capacity and to implement the domestic action plan to reduce excess fishing capacity. This study is aimed at assessing fishing capacity of the octopus coastal trap fishery(OCTF) using data envelopment analysis(DEA) which is a method recommended by FAO. The DEA results on 10 individual OCTF vessels showed that the capacity utilization(CU) was a 0.93 on average, indicating some differences in CU among vessels(0.79-1.0). In addition, results of the sensitivity analysis revealed that under the current level of catch, the gross tonnage, horse power, days fished, and traps per trip could be reduced by 35%, 33%, 16%, and 18% on average, respectively.