• Title/Summary/Keyword: curing shrinkage

Search Result 292, Processing Time 0.029 seconds

Finite Element Analysis of Residual Stress Evolution during Cure Process of Silicone Resin for High-power LED Encapsulant (고출력 LED 인캡슐런트용 실리콘 레진의 경화공정중 잔류응력 발달에 대한 유한요소해석)

  • Song, Min-Jae;Kim, Heung-Kyu;Kang, Jeong-Jin;Kim, Kwon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Silicone resin is recently used as encapsulant for high-power LED module due to its excellent thermal and optical properties. In the present investigation, finite element analysis of cure process was attempted to examine residual stress evolution behavior during silicone resin cure process which is composed of chemical curing and post-cooling. To model chemical curing of silicone, a cure kinetics equation was evaluated based on the measurement by differential scanning calorimeter. The evolutions of elastic modulus and chemical shrinkage during cure process were assumed as a function of the degree of cure to examine their effect on residual stress evolution. Finite element predictions showed how residual stress in cured silicone resin can be affected by elastic modulus and chemical shrinkage behavior. Finite element analysis is supposed to be utilized to select appropriate silicone resin or to design optimum cure process which brings about a minimum residual stress in encapsulant silicone resin.

EFFECT OF THE EXPONENTIAL CURING OF COMPOSITE RESIN ON THE MICROTENSILE DENTIN BOND STRENGTH OF ADHESIVES (복합레진의 exponential 중합법이 상아질접착제의 미세인장접착강도에 미치는 영향)

  • Seong, So-Rae;Seo, Duck-kyu;Lee, In-Bog;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.125-133
    • /
    • 2010
  • Objectives: Rapid polymerization of overlying composite resin causes high polymerization shrinkage stress at the adhesive layer. In order to alleviate the shrinkage stress, increasing the light intensity over the first 5 seconds was suggested as an exponential curing mode by an LED light curing unit (Elipar FreeLight2, 3M ESPE). In this study, the effectiveness of the exponential curing mode on reducing stress was evaluated with measuring microtensile bond strength of three adhesives after the overlying composite resin was polymerized with either continuous or exponential curing mode. Methods: Scotchbond Multipurpose Plus (MP, 3M ESPE), Single Bond 2 (SB, 3M ESPE), and Adper Prompt (AP, 3M ESPE) were applied onto the flat occlusal dentin of extracted human molar. The overlying hybrid composite (Denfil, Vericom, Korea) was cured under one of two exposing modes of the curing unit. At 48h from bonding, microtensile bond strength was measured at a crosshead speed of 1.0 mm/min. The fractured surfaces were observed under FE-SEM. Results: There was no statistically significant difference in the microtensile bond strengths of each adhesive between curing methods (Two-way ANOVA, p > 0.05). The microtensile bond strengths of MP and SB were significantly higher than that of AP (p < 0.05). Mixed failures were observed in most of the fractured surfaces, and differences in the failure mode were not observed among groups. Conclusion: The exponential curing method had no beneficial effect on the microtensile dentin bond strengths of three adhesives compared to continuous curing method.

Characteristics of Dental Restorative Composite Resins Prepared from 2,2-bis- [4- (2-hydroxy-3-rnethacryloyloxy propoxy) phenyl] propane Derivatives and Spiro Orthocarbonate (2,2-비스[4-(2-하이드록시-3-메타크릴로일옥시프로폭시)페닐] 프로판 유도체와 스파이로 오쏘카보네이트가 포함된 치아 수복재의 특성)

  • Kim Yong;Lee Juyeon;Park Kwangyong;Kim Chang Keun;Kim Ohyoung
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.426-432
    • /
    • 2004
  • To reduce volumetric shrinkage of the commercially available polymeric dental composite during curing reaction, (2,2-bis [4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane) (bis -GMA) derivatives, i.e., (2,2-bis[3-methyl, 4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propan) (DMBis-GMA) and (2,2-his [3,5-dimethyl ,4- (2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane) (TMBis-GMA) were synthesized and then new dental composite resin composed of Bis-GMA derivatives, diluent, spiro orthocarbonate (SOC), and inorganic filler was produced. Among the Bis-GMA derivative/Bis-GMA derivative/diluent mixtures, Bis-GMA/ TMBis-GMA/TEGDMA mixture exhibited the lowest volumetric shrinkage. Volumetric shrinkage of this mixture was further reduced by adding SOC. Volumtric shrinkage of dental composite prepared from commercially available resin monomer mixture was $2.5\%$, while that prepared from resin monomer mixture having minimum volumetric shrinkage was reduced to $0.7\%$. Mechanical strength of this dental composite was nearly the same with that of commercial products but the time required for the curing reaction was retarded.

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Preparation of Lightweight Aerated Concrete and Characteristic Analysis of Foaming Agent (경량기포콘크리트의 제조 및 기포제의 특성분석)

  • Yim, Going;Yim, Chai-Suk
    • The Journal of Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • Shrinkage may cause cracking in concrete. In practice such cracking must be considered in most concrete applications because, under normal conditions, drying of the concrete is unavoidable, and when drying takes place shrinkage occurs. Cracked concrete is an inferior concrete because it is weaker, more permeable, and more susceptible to chemical attack. The development of the strength of LAC with aging depends on a few factors such as type of the cement, W/C ratio, curing conditions and periods. The higher the strength of LAC, the lower the possibility of shrinkage cracking. Hence, the strength of LAC in the hypocaust system depends to a large extent on the effect of cracking decrease of the antifoaming rate to drying shrinkage in cement.

  • PDF

Concrete Test for Creep and Shrinkage Properties on High Strength Concrete (고강도 콘크리트 크리프 및 건조수축 특성을 위한 재료실험)

  • Moon, Hyung-Jae;Cha, Han-Il;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.857-860
    • /
    • 2008
  • This study shows systematic procedures for investigating creep and shrinkage properties of 50, 60, 70 MPa concrete mixes, which were developed by Lotte E&C R&D Ins. for Lotte Super Tower Jamsil. The concrete test was performed both local and foreign laboratory, S-Lab. and CTL Group respectively. The former have done for total five days. The procedures included the followings, specimen fabrication, mold removal, specimen marking, water bath curing, packaging, and shipment. The latter has been doing by CTL within PCA(Portland Cement Association). They are testing on static and dynamic modulus of elasticity, compressive strength, creep & shrinkage, splitting tensile strength. In the case of creep and shrinkage, the test will be doing for 18 months according to each loading age.

  • PDF

Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage (탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구)

  • Choi, Eun-Seong;Kim, Wie-Dae
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.404-411
    • /
    • 2018
  • As the autoclave process progresses in a given cure cycle, residual stress in the composite product is induced by cure shrinkage of the resin. As a result, It generates the thermal deformation such as spring-in and warpage, and the inaccuracy of the final product increases. It is important to predict thermal deformation in aerospace parts which require precise fabrication. The research has been done on predicting and grasping curing process of composite material. In this study, the cure mechanism of composite materials according to the process is predicted through finite element analysis, and the effect of cure shrinkage on thermal deformation generated by the process is analyzed.

Difference between shrinkage rate of irradiation amount of 3D printing UV curable resin and shrinkage rate according to a constant temperature water bath (3D 프린팅용 UV 경화 수지의 조사량 및 항온수조 침적에 따른 수축률의 차이)

  • Kim, Dong-Yeon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • Purpose: This study is to compare and analyze the shrinkage of the specimen after UV irradiation of UV cured resin at 5, 15, and 30 minutes. Methods: A cylindrical UV cured specimen was produced using a stainless steel mold. UV cured resin specimens were prepared in three groups: 5 minutes cured (5M), 15 minutes cured (15M), and 30 minutes cured (30M). The measurement was made in total 3rd. The measurement was made in total 3rd. The primary measurement was made after 24 hours using a digital measuring instrument. The 2nd and 3rd measurements were deposited in a constant temperature water bath and the shrinkage was measured. The measured data was calculated by referring to the ASTM C326 linear measurement calculation method. T-test and One-way ANOVA were performed to test the significance between groups. The post-test was conducted with Tukey (α=0.05). Results: When the inner diameter and the outer diameter of the three groups not placed in the water bath were compared and analyzed, the contraction was the smallest at 6.8% in the 5M group, and the contraction was the largest at 7.3% in the 30M group. In the outer diameter, the contraction of the 5M group was the smallest at 3.5%, and the contraction of the 30M group was the largest at 4.5%. Shrinkage decreased in all three groups immersed in a water bath for 3-7 days. Conclusion: In the UV cured resin specimen, the shrinkage increased as the amount of UV irradiation increased.

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.

Analysis of deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a DLP printer (DLP 프린터로 출력한 임시의치용 전악 인공치아의 후경화에 따른 변형 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • Purpose: This study aimed to analyze deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a digital light processing (DLP) printer. Methods: An edentulous model was prepared and an occlusal rim was produced. The edentulous model and occlusal rim were scanned using a model scanner. A complete denture was designed using a dental computer-aided design, and the denture base and artificial tooth were separated. Ten complete arch artificial teeth were printed using a 3D printer (DLP). Complete arch artificial teeth was classified into the following three groups: a group no post-curing (NC), a group with 10 minutes post-curing (10M), and a group with 20 minutes post-curing (20M). Specimens were scanned using a model scanner. The scanned data were overlapped with the reference data. Statistical analysis was performed using one-way ANOVA analysis of variance, Kruskal-Wallis test, and Mann-Whitney U test (α=0.05). Results: Regarding the overall deviation of complete arch artificial teeth, the NC group showed the lowest mean deviation of 111.13 ㎛ and the 20M group showed the highest mean deviation of 131.03 ㎛. There were statistically significant differences among the three groups (p<0.05). Conclusion: The complete arch artificial tooth showed deformation due to post-curing. In addition, the largest shrinkage deformation was observed at 10 minutes of post-curing, whereas the least deformation was observed at 20 minutes.