• Title/Summary/Keyword: cultured cells

Search Result 3,758, Processing Time 0.03 seconds

Effects of Polymerized Basic Amino Acids Under 50mer Range of Degree of Polymerization on Physiological and Stimulated Mucin Release from Cultured Hamster Tracheal Surface Epithelial Cells (중합도 50mer 이하의 염기성 아미노산 중합체들이 일차배양 햄스터 기관표면 상피세포에서의 생리적 뮤신유리 및 분비자극 상태에서의 뮤신유리에 미치는 영향)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.156-164
    • /
    • 2002
  • In the present study, we tried to investigate whether polymerized basic amino acid e.g. poly-L-lysine (PLL) which has the degree of polymerization under 50mer significantly affects the physiological and stimulated mucin release from cultured hamster tracheal surface epithelial cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3{H}$-glucosamine for 24 hr and chased for 30 min in the presence of either PLLs or adenosine triphosphate (ATP) and PLL to assess the effects on basic or ATP-stimulated $^3{H}$-mucin release. Possible cytotoxicities of PLLs were assessed by measuring lactate dehydrogenase (LDH) release from HTSE cel1s during treatment. The results were as follows: PLLs significantly inhibited basic mucin release from cultured HTSE cells in a dose-dependent manner from the range of 46mer to 14mer; PLL 46mer significantly inhibited the stimulated mucin release by ATP from cultured HTSE cells; there was no significant release of LDH from cultured HTSE cells during treatment. We conclude that PLLs inhibit both physiological and stimulated mucin release from airway epithelial cells without significant cytotoxicity and PLL lost its activity under the range of 14mer. This finding suggests that polymer of basic amino acid like PLL might function as a regulator for hypersecretion of mucus manifested in various respiratory diseases.

Effects of Oxytocin and $IL-1{\alpha}$ In Vitro Development of Bovine Embryos Cultured with Uterine Cells

  • Shin, Seung-Oh;Park, Soo-Bong;Lee, Dong-Seok;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.307-311
    • /
    • 2006
  • The purpose of this study was to determine effects of oxytocin and $interleukin-1{\alpha}$ on in vitro development of bovine embryo cultured with endometrial epithelial and stromal cells isolated from bovine uterus. The expressions of COX-2 mRNA in bovine endometrium were also studied. When embryos were cultured with epithelial cells, the rate of blastocysts was significantly (p<0.05) higher in embryos treated with oxytocin than that of control group. The rate of hatched blastocysts was also significantly (p<0.05) higher in embryos treated with oxytocin than those of two control groups. On the other hand, when the embryos were cultured with stromal cells, the rate of blastocysts were significantly (p<0.05) higher than those of groups treated with $IL-1{\alpha}$, oxytocin and control with stromal cells than that of control group without stromal cells. The rate of blastocysts hatched were also significantly (p<0.05) higher in group treated with $IL-1{\alpha}$ than those of control group without stromal cells and oxytocin group. In another experiment, COX-2 gene was expressed in embryo group treated with oxytocin during the co-culture of embryos with epithelial cells. In contrast, COX-2 mRNA was expressed in group treated with $IL-1{\alpha}$ when the embryos were cultured with stromal cell. This result shows that oxytocin and $IL-1{\alpha}$ were stimulate embryo development in vitro when embryos were cultured with epithelial and stromal cells, and can affect the development of bovine embryos in the uterus.

Hepatocyte Growth Factor is the Key Cytokine in Stimulating Potential Stem Cells in the Cord Blood into Hepatic Lineage Cells

  • Ryu, Kyung-Ha;Cho, Su-Jin;Woo, So-Youn;Seoh, Ju-Young;Jung, Yun-Jae;Han, Ho-Seong
    • IMMUNE NETWORK
    • /
    • v.7 no.3
    • /
    • pp.117-123
    • /
    • 2007
  • Background: This study was designed to investigate the role of the hepatocyte growth factor (HGF) with regards to differentiation of somatic stem cells originating from the human umbilical cord blood (UCB) into hepatic lineage cells in vitro culture system. Methods: Mononuclear cells from UCB were cultured with and without HGF based on the fibroblast growth factor (FGF)-1, FGF-2, and stem cell factor. The cultured cells were confirmed by immunofluorescent staining analysis with albumin (ALB), cytokeratin-19 (CK-19), and proliferating cell nuclear antigen (PCNA) MoAb. ALB and CK-18 mRNA were also evaluated by reverse transcription-polymerase chain reaction. In order to observe changes in proliferating capacity with respect to the cultured period, CFSE with affinity to proliferating cells were tagged and later underwent flow cytometry. Results: In the HGF-treated group, cultured cells had a large oval shaped appearance with adherent, but easily detachable characteristics. In the HGF-non treated group, these cells were spindle-shaped with strong adherent characteristics. Expressions of ALB and CK-19 were evident in HGF-treated group compared to non-expression of those in to HGF-non treated group. Dual immunostaining analysis of the ALB producing cells showed presence of PCNA in their nuclei, and ALB and CK-18 mRNA were detected on the 21st day of cultured cells in the HGF-treated group. Conclusion: Our findings suggest that HGF has a pivotal role in differentiating somatic stem cells of human UCB into hepatic lineage cells in vitro.

Study on the Effect of Benincasae Semen on Cultured Mouse Myocardial Cells Damaged by Adriamycin (Adiamycin에 의해 손상된 심근세포에 대한 동과의 영향에 관한 연구)

  • Hong Gi Youn;Lee Young Mi;Lee Jung Hun;Lee Kang Chang;Cho Hae Won;Han Kyung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1207-1210
    • /
    • 2002
  • To examine the cardiotoxic effect of adriamycin on cultured rat myocardial cells, cytotoxicity was measured by MTT assay after cultured myocardial cells were grown with various concentrations of adriamycin(ADA) for 48 hours. The protective effect of Benincasae Semen(BS) on ADR-induced cardiotoxicity was also examined in these cultures. ADR decreased cell viability of cultured rat myocardial cells remarkably in a dose- and time-dependent manners. In protective effect of BS, it was very effective in blocking ADR-induced cytotoxicity. From these results, it is suggested that ADR shows cardioxicity, and the herba extract, as is very effective in preventing ADR-induced cytotoxicity on cultured rat myocardial cells.

Effect of on Cultured Myocardial Cells Damaged by Hydrogen Peroxide (과산화수소로 손상된 배양 심근세포에 대한 골쇄보의 영향)

  • Lee Byung Chan;Lee Joung Hwa;Lee Whan Bong;Lee Kang Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.662-665
    • /
    • 2003
  • To examine the cytotoxicity of reactive oxygen species in cultured rat myocardial cells, cytotoxic effect was determined by MTT assay after cultured cells were incubated for 4 hours in the media containing 1~30μM of H₂O₂. And also, the protective effect of Drynariae Rhizoma(DR) was determined in these cultrures. Cell viability was significantly decreased in a dose-dependent manner after exposure of 15 μM H₂O₂ to cultured rat myocardials for 4 hours. In the protective effect of DR, DR prevented the H₂O₂-induced cytotoxicity in these cultures. From these results, it suggests that H₂O₂ has toxic effect in cultured mouse myocardial cells and DR has protective effect on the cytotoxicity induced by H₂O₂.

The Biocompatibility Of Cultured Bone Marrow Cells And Gingival Fibroblasts On The Titanium Surfaces (티타늄 배양에 대한 배양골수와 치은 섬유아세포의 생체적합성)

  • Oh, Choong-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1996
  • The purpose of this study was to evaluate the response in aspect of attachment and growth rate of osteoblasts and growth rate of osteoblasts and human gingival fibroblasts to the commercially pure titanium(CP titanium)and titanium alloy(Ti-6AI-4V) that are used widely as implant materials, and to obtain the basic information to ideal implant materials. In the studly, commercially pure titanium in first test group, titanium alloy(Ti-6AI-4V) in second test group, cobalt-chrome-molybdenum alloy(Co-Cr-Mo alloy) in positive control group, and tissue culture polystyrene plate in negative control group were used. The results of this study were as follows. 1. Bone marrow cells cultured on CP titanium and Ti-6Al-4V showed significantly greater attachment and growth rate(p(0.05) compared to Co-Cr-Mo alloy in each time. 2. There were no significant differences(p>0.05) in attachment and growth rate of bone marrow cells cultured on CP titanium and Ti-6AI-4V or tissue culture plate. 3. Most bone marrow cells cultured on CP titanium, Ti-6Al-4V and tissue culture plate were attached well to each substratum in first 2days, and then, grew at higher growth rate. On the other hand, some cells cultured on Co-Cr-Mo alloy failed to attach in first 2 days, and then, attached cells grew at lower growth rate than other groups. 4. Attachment and growth rates of gingival fibroblasts cultured on CP titanium and Ti-6Al-4V showed no significant differences(p>0.05) compared to Co-Cr-Mo alloy in 2 days, but significantly greater increase(p<0.05) in 5 and 9 days. 5. There were no significantly differences(p>0.05) between growth rates on gingival fibroblasts cultured on CP titanium, Ti-6Al-4V and tissue culture plate in 2 and 5days, but a significant lower growth rate(p<0.05) on CP titanium and Ti-6Al-4V versus tissue culture plate. 6. Some gingival fibroblasts cultured on all specimen groups failed to attach, but attached cells grew well, especially on CP titanium, Ti-GAl-4V and tissue culture plate. 7. There were no significant differences(P>0.05) between growth rates of both bone marrow cells and gingival fibroblasts cultured on CP titanium and Ti-6AI-4V. As a result of this study, both commercially pure titanium and Ti-6AI-4V showed excellent biocompatibility and there was no significant difference in the cellular response to the both metals. Bone marrow cells cultured on each substratum showed significantly greater growth rate and responded sensitively to cytotoxic effects of metal surfaces compared to gingival fibroblasts. Considering cell response to the substrate, it was likely that the composition itself of titanium metals have no significant effect on the biocompatibility. Further study need to be done to evaluate the influence of surface characteristics on cellular responses.

  • PDF

Analysis of gene expression during mineralization of cultured human periodontal ligament cells

  • Choi, Hee-Dong;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.30-43
    • /
    • 2011
  • Purpose: Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods: To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (${\beta}$-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results: The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions: This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.

Expression of Tight Junction Molecule In The Human Serum-Induced Aggregation of Human Abdominal Adipose-Derived Stem Cells In Vitro

  • Yoon, A Young;Yun, Sujin;Yang, HyeJin;Lim, Yoon Hwa;Kim, Haekwon
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.213-224
    • /
    • 2014
  • Previously we have shown that human abdominal adipose derived-stem cells (ADSCs) could aggregate during the high-density culture in the presence of human serum (HS). In the present study, we observed that human cord blood serum (CBS) and follicular fluid (HFF) also induced aggregation. Similarly, porcine serum could induce aggregation whereas bovine and sheep sera induced little aggregation. qRT-PCR analyses demonstrated that, compared to FBS-cultured ADSCs, HS-cultured cells exhibited higher level of mRNA expression of CLDN3, -6, -7, -15, and -16 genes among the tight junction proteins. ADSCs examined at the time of aggregation by culture with HS, BSA, HFF, CBS, or porcine serum showed significantly higher level of mRNA expression of JAM2 among JAM family members. In contrast, cells cultured in FBS, bovine serum or sheep serum, showed lower level of JAM2 expression. Immunocytochemical analyses demonstrated that the aggregates of HS-cultured cells (HS-Agg) showed intense staining against the anti-JAM2 antibody whereas neither non-aggregated cells (HS-Ex) nor FBS-cultured cells exhibited weak staining. Western blot results showed that HS-Agg expressed JAM2 protein more prominently than HS-Ex and FBS-cultured cells, both of latter reveled weaker intensity. These results suggest that the aggregation property of ADSCs during high-density culture would be dependent on the specific components of serum, and that JAM2 molecule could play a role in the animal sera-induced aggregation in vitro.

The Egect of Heavy Metal tons on the Differentiation of Cultured Muscle Cells of Chick Embryo (배양계배 근세포의 분화과정에 미치는 중금속 이온의 영향)

  • 위인선;이종빈
    • The Korean Journal of Zoology
    • /
    • v.30 no.4
    • /
    • pp.410-416
    • /
    • 1987
  • The effect of heavy metal ions on the synthesis of proteins in cultured chick embryonic muscle cells were examined by labeling the cellular proteins with 35S-methionine and the surface proteins with Nalssl and lactoperokidase. The protein pattern in the cells cultured for 48 hrs showed little or no difference whether or not the cells were treated with any of the metal ions including Cu2+, Cd2+ and Hg2+, which are known to block the fusion of mypblasts. However, a 43kd protein disappeared from the control cells cultured for 72 hrs but remained unchanged in the cells treated with the metal ions. When analyzed for the syntheiic pattern of membrane proteins, addition of the ions (particularly of Cda+ and Cr3+) caused a marked increase in the level of 66kd protein, as compared to that in the untreated cells. By contrast, the level of 29kd protein was much higher in the control cells than in the cells treated with the metal ions. These results suggest that the heavy metal ions appear to block the degradation of 43kd soluble protein and 66kd membrane protein, perhaps by inhibiting a metalloprotease, which may be essential for the myogenic process of embryonic muscle cells.

  • PDF

Tumorsphere formation and cancer stem cell characterization of REM134 canine mammary carcinoma cells (개 REM134 유선종양세포의 sphere 형성을 통한 암 줄기세포 특성 분석)

  • Byeon, Jeong Su;Lee, Jienny;Jeong, Da-Un;Gu, Na-Yeon;Cho, In-Soo;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.4
    • /
    • pp.201-209
    • /
    • 2018
  • Canine mammary tumors are among the most frequently observed cutaneous tumors in female dogs. Cancer stem cells (CSCs), referred to as tumor-initiating cells, are thought to have properties similar to normal stem cells such as the ability to self-renewal and to differentiate into various cell types. Biological understanding of CSCs and the critical pathways involved in their maintenance are important in research and therapy for mammary tumors. We conducted the present study on sphere formation from REM134 cells by using methylcellulose to produce tumorspheres on a large scale and compared the specific markers of the spheres-formed and plating-cultured REM134 cells. The results revealed that the tumorspheres cultured in methylcellulose had higher seeding density and improved morphology compared to those produced in normal sphere formation medium. Expression levels of stemness markers and CSC-related markers were higher in tumorsphere-forming cells than in plating-cultured cells. Subsequently, we transplanted the tumorsphere-forming and plating-cultured cells into female nude mice to examine their tumorigenic potential. Tumor volume increased rapidly in mice transplanted with tumorsphere-derived cells compared to plating-cultured cells. We observed a novel sphere-forming condition for REM134 cells and showed that REM134 cell tumorspheres can exhibit improved CSC properties.