• Title/Summary/Keyword: cultivation system

Search Result 1,377, Processing Time 0.022 seconds

Effects of the Brackish Water Desalination System on Soil Environment and Growth in Squash Greenhouse Cultivation Area (시설재배지에서 기수담수화시스템 적용에 따른 토양 환경 및 애호박의 생육 영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Jeong, Han-Suk;Kim, Hak-Kwan;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • The objectives of the research were 1) to develop the low-cost and high efficient desalination system to treat brackish water having high salt contents for irrigation at greenhouses near coast, and 2) to monitor and assess the effects of the brackish water desalination system on soil environment and growth in squash greenhouse cultivation area. The monitoring site was one of the squash greenhouse cultivation farm at Choengam-ri, Jinsang-myun, Gwangyang-si, Jeonnam-Do Monitoring results for groundwater irrigation water quality, and salinity showed a remarkable difference between control and treatment group. The salinity of soil at treatment group was less than at control group. While, the system made possible to increase the squash quantity from 4.7 ea to 6.3 ea at each and the average weight of the harvested squash was increased from 277.2 g to 295.1 g. The applied brackish water desalination system may be appled to reclaim sea or brackish irrigated area as alternative water resources, although long-term monitoring is needed to get more representative results at different level of salinity.

Impact of 8-year soybean crop rotation on soil characteristics in highland Kimchi cabbage cultivation (고랭지 여름배추(Brassica rapa subsp. pekinensis)재배에서 8년간 콩(Glycine max)과의 돌려짓기 재배가 토양 환경에 미치는 영향)

  • Gyeryeong Bak;Jeong-Tae Lee;Yang-Min Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.27-41
    • /
    • 2024
  • In this study, we evaluated productivity, soil physiochemical properties, and soil microbial characteristics in Kimchi cabbage(Brassica rapa subsp. pekinensis) cultivation within a highland environment during summer. Specifically, we examined the effect of different cropping systems, namely monoculture and rotation with soybean, over an 8-year cropping period. The results of our investigation revealed that significant differences were absent in terms of yield and soil physiochemical properties between the two cropping systems. However, microbial characteristics exhibited distinctive patterns. Bacterial diversity was significantly higher in the rotation system that in the monoculture, whereas fungal diversity demonstrated a preference for rotation although the result was not significant. Our findings identified the presence of Bradyrhizobium stylosanthis, a nitrogen-fixation symbiont, as an indicator ASV (amplicon sequence variant) in the rotation system, where it displayed significantly higher abundances. These observations suggest a potential positive effect of the rotation system on nitrogen fixation. Notably, throughout the cultivation period, both cropping systems did not exhibit critical disease incidences. However, Fusarium oxysporum, a well-known pathogen responsible for inducing fusarium wilt disease in Kimchi cabbage, was detected with significantly higher abundance in the monoculture system. This finding raises concerns about the potential risk associated with Kimchi cabbage cultivation in a long-term monoculture system.

Development of a sustainable land-based Gracilaria cultivation system

  • Kim, Jang K.;Yarish, Charles
    • ALGAE
    • /
    • v.29 no.3
    • /
    • pp.217-225
    • /
    • 2014
  • Land-based seaweed (Gracilaria) cultivation systems may provide products with high quality and biosafety for human consumption, as well as for other high value applications. However, a limitation for this land based system is high management costs. The objective of this study was to determine if the management costs for Gracilaria cultivation can be reduced without a decrease in productivity by using $CO_2$ injection along with a high stocking density and high photosynthetically active radiation (PAR), and commercially available fertilizers. When Gracilaria tikvahiae was cultivated at a high stocking density and high PAR, coupled with $CO_2$ enhancement, the productivity was significantly higher than that at a lower stocking density, low light without $CO_2$ injection. We also found that G. tikvahiae grown in a medium of commercially available fertilizer (Jack's Special, JS) showed a similar growth rate and productivity to that grown in von Stosch's enriched (VSE) seawater, while the cost for JS media is only 2% of the cost for VSE. These results suggest that $CO_2$ injection and commercial fertilizer may be a potential way to provide sustainability in land-based Gracilaria cultivation systems.

A Study on Agricultural Interchange for Forming Community - focus on agricultural products contracting cultivation in Kaesong industrial complex - (지역사회 공동체 형성을 위한 농업교류에 관한 연구 - 개성공단 농산물 계약재배를 중심으로 -)

  • Choi, Rack-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.179-190
    • /
    • 2007
  • This study aimed to present the policy scheme for agricultural interchange forming community group with North Korea through counterplot providing our agricultural products to Korean labor who advanced Kaesong industrial complex and North Korean workers. Trying to promote agricultural products contracting cultivation for forming community group as follows; First, we must understand North Korean political system. Second, on occasion to contract cultivation about limited items, we will drive to consult item and agricultural output with the Ministry of National Unification before contracting with North Korea. Third, dealing with contraction in the concrete. Finally, it must be supported by government and international level.

  • PDF

Uniformity Assessment of Soil Moisture Redistribution for Drip Irrigation (점적관개에 따른 토양수분 재분배 균일성 평가)

  • Choi, Soon-Kun;Choi, Jin-Yong;Nam, Won-Ho;Hur, Seung-Oh;Kim, Hak-Jin;Chung, Sun-Ok;Han, Kyung-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • Greenhouse cultivation has been increasing for high quality and four season crop production in South Korea. For the cultivation in a greenhouse, maintaining adequate soil moisture at each crop growth stage is quite important for yield stability and quality while the behavior of moisture movement in the soil has complexity and adequate moisture conditions for crops are vary. Drip irrigation systems have been disseminated in the greenhouse cultivation due to advantages including irrigation convenience and efficiency without savvy consideration of the soil moisture redistribution. This study aims to evaluate soil moisture movement of drip irrigation according to the soil moisture uniformity assessment. Richards equation and finite difference scheme were adapted to simulate soil moisture behavior in soil. Soil container experiment was conducted and the model was validated using the data from the experiment. Two discharge rate (1 ${\ell}/hr$ and 2 ${\ell}/hr$) and three spaces between the emitters (10 cm, 20 cm, and 30 cm) were used for irrigation system evaluation. Christiansen uniformity coefficient was also calculated to assess soil moisture redistribution uniformity. The results would propose design guidelines for drip irrigation system installation in the greenhouse cultivation.

Study on Growth Responses of Soybean in Paddy Field for Establishing Environment-Friendly Cropping System (친환경 논 밭 윤환 콩 재배법 확립을 위한 논 콩 재배시 품종별 생육반응 연구)

  • Kim, Yong-Wook;Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • This study was conducted with two objectives ; one was to select the suitable soybean cultivars for cultivation in paddy field and the other was to establish the environment-friendly rotational cropping system of soybean instead of rice in paddy field. In order to evaluate growth adaptation and yields, Eve soybean cultivars were cultivated in Yeoncheon, Keonggi province, with two cultivation methods such as level row and high ridge. Growth of the top plants, such as stem length, number of branches, diameter of stem, were higher in high ridge than in level row, however, the differences among the cultivars were bigger than those between the cultivation methods. Dry weight of top plant was significantly different among the cultivars during whole growth stages, however, it was higher in level row than in high ridge at V5 stage while it became higher in high ridge as growth progressed. Roots were more developed in high ridge than in level row during whole growth stages. T/R ratio in level row was higher than that in high ridge. During whole growth stages, significant differences were observed among the cultivars in growth and yields in each cultivation method and yields of Eunhakong was the highest. In results, number of nodules and T/R ratio at V5 stage, number of pods at R2 stage, and number of seeds and T/R ratio at R5 stage had highly correlated with yields, respectively.

  • PDF

Collection Data with Growth of Three Strawberry Cultivars in High Bed System for Development of the Edge Computing

  • Jo, Jung Su;Sim, Ha Seon;Kim, Sung Kyeom
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.78-80
    • /
    • 2022
  • Strawberry (Fragaria × ananassa) cultivation methods are rapidly changing from traditional soil cultivation to high bed hydroponics, which are easy to agricultural working. The objective was to evaluate the growth characteristics of three strawberry cultivars cultivated high bed system. The "Seolhyang", "Altaking", and "Keumsil" strawberry plants were transplanted in a glass-type greenhouse at Kyungpook National University Gunwi Agricultural Field. The cultivation period was approximately seven months from September 17, 2021 to April 21, 2022. Growth parameters measured including the number of leaves, plant height, petiole length, leaf length, leaf width, and crown diameter at two-week intervals. The environmental parameters for each location in the greenhouse were collected. Plant height in all cultivars continued to decrease from the early stage to the late stage of growth. The crown diameter was increased by 50 DAT, and then gradually decreased until late growth stage in all cultivars. Results indicated that the growth parameters represented to vary according to the cultivar of strawberry plants.

  • PDF

Desalinization Effect of Off-season Crop Cultivation in Long-term Oriental Melon Cultivated Plastic Film House Soils (휴경기 후작물 재배에 의한 참외 장기연작 비닐하우스 토양의 제염 효과)

  • Byeon, Il-Su;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • BACKGROUND: During the off-season, the cultivation of Chinese cabbage and water dropwort is often used to desalinize plastic film house soils. The objective of this study was to verify the effect of double-cropping systems on the salt removal in oriental melon cultivated plastic film house soils.METHODS AND RESULTS: Electrical conductivity (EC) and soluble salt contents were measured in soils collected from plastic film houses of oriental melon cultivation before and after the off-season crop cultivation. Also the same measurements were performed in the next oriental melon season to estimate the desalinization effect of double-cropping systems. During the cultivation of Chinese cabbage under open-field condition, ECeof surface soil was reduced from 6.0 to 0.8 dS/m. Double-cropping of water dropwort in flooded soil was also efficient in removing the salts accumulated during oriental melon cultivation. In the house soils where salts were removed during the off-season crop cultivation, soil ECewas maintained below 3 dS/m during the next oriental melon cultivation season.CONCLUSION: The off-season cropping under open-field or flooded condition was effective in desalinization of plastic film house soils. Since the salt removal effect is not expected to last for several years, the double-cropping system should be introduced every season to maintain soil EC below the critical level.

Development of a Mechanical Harvesting System for Red Pepper(I) - Surveys on Conventional Pepper Cultivation and Mechanization of Pepper Harvesting - (고추 기계수확 시스템 개발(I) - 고추 재배, 수확실태 조사 -)

  • Choi, Young;Jun, Hyun-Jong;Lee, Chung-Keun;Lee, Chae-Sik;Yoo, Soo-Nam;Suh, Sang-Ryoung;Choi, Young-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.367-372
    • /
    • 2010
  • Consumption of pepper, a major spice vegetable used for seasoning Kimchi, continues to increase, but cultivation is in decline due to shortage of rural labor in Korea. The 39.2% of total labor requirement for conventional pepper cultivation was available for harvesting work. Therefore conventional manual harvesting should be turned to mechanical harvesting for labor-saving, cost-reducing and easy work. Surveys on conventional pepper cultivation patterns, labor requirements for various pepper cultivation works, and farmers' opinions on the mechanization of pepper harvesting were conducted to obtain basic informations. The labor requirement for pepper harvesting was 954 h/ha out of a total labor requirement of 2,436 h/ha for pepper cultivation. Harvesting was the hardest work, and hiring workmen for harvesting was also difficult. Farmers preferred to develop a small-scale pepper harvester using agricultural tractor or cultivar. Most farmer agreed to change cultivation pattern for mechanization of pepper harvesting, but hesitated to adopt new one-time-harvesting pepper varieties.

A Study on Control system design for Automated Cultivation of product (농작물 재배 자동화를 위한 제어시스템 설계에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • Today, there is increasing the elderly population in rural community, and people of returning from the urban to the rural community are demand to be of high value-added agriculture. In this time, there are required to regularization, standardization, automation, for getting of production of high value crops. In this paper, we are study for automation cultivation control system design for produce high-value crops. this system were designed of two parts that one part is measure and control unit, another part is server part for database and server side control. the main controller for measurement and control is used MC9S08AW60, server for Database and server-side control was using MySQL with CentOS. The source code of control program was coding C and compile with GCC. the functions of measurement and control unit are digital input and output each 8channels and can be scan-able of 20 Bit with 2CH/Sec. Analog Output were designed that can be output of 4-20mA or 0-5V on 4channel. The Digital input and output part were designed 8-channel, and using the high speed photo coupler and relays. We showed that system is possible to measure a 20bit data width, 2Ch/sec as 8 channel analog signals.