DOI QR코드

DOI QR Code

Impact of 8-year soybean crop rotation on soil characteristics in highland Kimchi cabbage cultivation

고랭지 여름배추(Brassica rapa subsp. pekinensis)재배에서 8년간 콩(Glycine max)과의 돌려짓기 재배가 토양 환경에 미치는 영향

  • Gyeryeong Bak (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Jeong-Tae Lee (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Yang-Min Kim (Highland Agriculture Research Institute, National Institute of Crop Science)
  • 백계령 (국립식량과학원 고령지농업연구소) ;
  • 이정태 (국립식량과학원 고령지농업연구소) ;
  • 김양민 (국립식량과학원 고령지농업연구소)
  • Received : 2023.11.07
  • Accepted : 2023.12.20
  • Published : 2024.01.31

Abstract

In this study, we evaluated productivity, soil physiochemical properties, and soil microbial characteristics in Kimchi cabbage(Brassica rapa subsp. pekinensis) cultivation within a highland environment during summer. Specifically, we examined the effect of different cropping systems, namely monoculture and rotation with soybean, over an 8-year cropping period. The results of our investigation revealed that significant differences were absent in terms of yield and soil physiochemical properties between the two cropping systems. However, microbial characteristics exhibited distinctive patterns. Bacterial diversity was significantly higher in the rotation system that in the monoculture, whereas fungal diversity demonstrated a preference for rotation although the result was not significant. Our findings identified the presence of Bradyrhizobium stylosanthis, a nitrogen-fixation symbiont, as an indicator ASV (amplicon sequence variant) in the rotation system, where it displayed significantly higher abundances. These observations suggest a potential positive effect of the rotation system on nitrogen fixation. Notably, throughout the cultivation period, both cropping systems did not exhibit critical disease incidences. However, Fusarium oxysporum, a well-known pathogen responsible for inducing fusarium wilt disease in Kimchi cabbage, was detected with significantly higher abundance in the monoculture system. This finding raises concerns about the potential risk associated with Kimchi cabbage cultivation in a long-term monoculture system.

Keywords

Acknowledgement

이 논문은 농촌진흥청 연구사업 "고랭지 배추 반쪽 시들음병 발병지 토양환경 분석 및 친환경 방제기술 개발"(과제번호: PJ016805022023)에 의해 지원되었음.

References

  1. Asimakoula, S., Marinakos, O., Tsagogiannis, E., Koukkou, A. I., 2023, Phenol degradation by Pseudarthrobacter phenanthrenivorans Sphe3, Microorganisms, 11(2), 524.
  2. Bak, G. R., Lee, J. T., 2021, Effect of napa cabbage(Brassica campestris var. Pekinensis) cropping systems on soil physiochemical properties, yield and quality in alpine area of South Korea, Korean J. Plant Res., 34(4), 249-256.
  3. Bak, G. R., Lee, G. J., Lee, J. T., Jee, S. N., 2022, Crop rotation affects biological properties of rhizosphere soil and productivity of Kimchi cabbage(Brassica rapa ssp. pekinensis) compared to monoculture, Hortic. Environ. Biotechnol., 63, 613-625.
  4. Bano, S., Wu, X., Zhang, X., 2021, Towards sustainable agriculture: rhizosphere microbiome engineering, Appl. Microbiol. Biotech., 105, 7141-7160.
  5. Benitez, M. S., Osborne, S. L., Lehman, R. M., 2017, Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome, Sci. Rep., 7, 15709.
  6. Bennett, A. J., Hilton, S., Bending, G. D., Chandler, D., Mills, P., 2014, Impact of fresh root material and mature crop residues of oilseed rape (Brassica napus) on microbial communities associated with subsequent oilseed rape, Biol. Fertil. Soils., 50, 1267-1279.
  7. Chen, S., Zhou, X., Yu, H., Wu, F., 2018, Root exudates of potato onion are involved in the suppression of clubroot in a Chinese cabbage-potato onion-Chinese cabbage crop rotation, Eur. J. Plant Pathol., 150, 765-777.
  8. De Castro, A. P., Quirino, B. F., Pappas, J. G., Kurokawa, A. S., Neto, E. L., Kruger, R. H., 2008, Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields, Arch. Microbiol., 190(2), 129-139.
  9. Delamuta, J. R. M., Ribeiro, R. A., Araujo, J. L. S., Rouws, L. F. M., Zilli, J. E., Parma, M. M., Melo, I. S., Hungria, M., 2016, Bradyrhizobium stylosanthis sp. Nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp., International journal of systematic and evolutionary Microbiology., 66(8).
  10. Deligios, P. A., Tiloca, M. T., Sulas, L., Buffa, M., Caraffini, S., Doro, L., Sanna, G., Spanu, E., Spissu, E., Urracci, G. R., Ledda, L., 2017, Stable nutrient flows in sustainable and alternative cropping systems of globe artichoke, Agron. Sustain. Dev., 37(54).
  11. Gan, Y., Hamel, C., O'Donovan, J. T., Cutforth, H., Zentner, R. P., Campbell, C. A., Niu, Y., Puppy, L., 2015, Diversifying crop rotations with pulses enhances system productivity, Sci. Rep, 5(1), 14625.
  12. Guinazu, L. B., Andres, J. A., Del Papa, M. F., Pistorio, M., Rosas, S. B., 2010, Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti, Biol. Fertil. Soils., 46(2), 185-190.
  13. HARI (Highland Agriculture Research Institute), 2000, Vegetable cultivation technology in highland, Pyeongchang, Korea, 52-53.
  14. Hegewald H., Wensch-Dorendorf, M., Sieling K., Christen, O., 2018, Impacts of break crops and crop rotations on oilseed rape productivity: A review, Eur. J. Agron., 101, 63-77.
  15. Hilton, S., Bennett, A. J., Keane, G., Bending, G. D., Chandler, D., Stobart, R., Mills, P., 2013, Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline, Plos one., 8(4), e59859.
  16. Jung, J. M., Yoon, B. K., Kim, H. J., Seo, Y. W., Yang, S. K., Choi, K. J., 2007, The effects on resources of soil amendment matters friendly-environment on the marketing for agriculture of Chinese cabbage, J. Bio. Environ. Cont., 16, 276-281.
  17. Kaduyu, I., Musinguzi, P., 2021, Impact of irrigated and non-irrigated cropping systems on soil physicochemical properties in a small-scale irrigation farming system in Eastern Uganda, Arch. Agric. Environ. Sci., 6(3), 313-319.
  18. Kim, C. H., Cho, W. D., Kim, H. M., 2000, Distribution of Plasmodiophora brassicae causing clubroot disease of Chinese cabbage in soil, Plant Dis. Res., 6, 27-33.
  19. Kim, C. Y., Seo, Y. J., Kwon, T. Y., Park, J. H., Heo, M. S., Ha, S. K., 2010, Correlation between the factors of soil physical property in upland soil, Korean J. Soil. Sci. Fert., 43(6), 793-797.
  20. Lal, R., 2003, Cropping systems and soil quality, J. Crop Prod., 8,1-2, 33-52.
  21. Lee, Y. M., Ahn, J. H., Choi, Y. M., Weon, H. Y., Yoon, J. H., Song, J. K., 2015, Bacterial core community in soybean rhizosphere, Korean J. Microbiol., 51(4), 347-354.
  22. Li, J., Wang, C., Liang, W., Liu, S., 2021, Rhizosphere microbiome: The emerging barrier in plant-pathogen interactions, Front. Microbiol., 12, 772420.
  23. Li, P., Liu, J., Jiang, C., Wu, M., Liu, M., Wei, S., Qiu, C., Li, G., Xu, C., Li, Z., 2020, Trade-off between potential phytopathogenic and non-phytopathogenic fungi in the peanut monoculture cultivation system, Appl. Soil Ecol., 148, 103508.
  24. Lu, S., Lepo, J. E., Song, H. X., Guan, C. Y., Zhang, Z. H., 2018, Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil, Biol. Fertil. Soils., 54, 909-923.
  25. MAFRA (Ministry of Agriculture, Foodand Rural Affairs), 2006, Statistical yearbook of agriculture and forestry, MAFRA, Seojong, Korea.
  26. Marinari, S., Masciandaro, G., Ceccanti, B., Grego, S., 2000, Influence of organic and mineral fertilisers on soil biological and physical properties, Bioresour. Technol., 72(1), 9-17.
  27. Moon, Y. G., Kim, W. G., Cho, W. D., Sung, J. M., 2001, Occurrence of Fusarium wilt on cruciferous vegetable crops and pathogenic differentiation of the causal fungus, Res. Plant Dis., 7(2), 91-101.
  28. Morris, P. F., Bone, E., Tyler, B. M., 1998, Chemotropic and contact responses of phytophthora sojae hypha to soybean isoflavonoids and artificial substrates, Plant Physiol., 114(4), 1171-1178.
  29. National institute of agricultural science and technology(NIAST), 2002, Methods of soil chemical analysis, RDA, Suwon, Korea.
  30. Oberholster, T., Vikram, S., Cowan, D., Valverde, A., 2018, Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation, Sci. Total Environ., 624, 530-539.
  31. Pankaj, T., Manuel, D. B., Thomas, C. J., Chanda, T., Ian, C. A., Kaitao, L., Matthew, M., Kenneth, F., Bhupinder, P. S., David, M., Brajesh, K. S., 2017, Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content, Environ. Microbiol., 19(8), 3070-3086.
  32. RDA (Rural development administration)., 2012, Agricultural science and technology research survey analysis standard, Suwon, Korea.
  33. RDA (Rural development administration), 2021, Kimchi cabbage,7th ed., Jeonju, Korea, available in https://www.nonsaro.go.kr, p9.
  34. Robitzski, D., Newly renamed prokaryote phyla cause up roar, 2022, The scientist, Available at: https://www.the-scientist.com/news-opinion/newly-renamed-prokaryote-phyla-cause-uproar-69578.
  35. Ryan, P. R., Dessaus, Y., Thomashow, L. S., Weller, D. M., 2009, Rhizosphere engineering and management for sustainable agriculture, Plant Soil., 321(1), 363-383.
  36. Sabuquillo, P., Sztejnberg, A., De Cal, A., Melgarejo, P., 2009, Relationship between number and type of adhesions of Penicillium oxalicum conidia to tomato roots and biological control of tomato wilt, Biol. Control., 48(3), 244-251.
  37. Samaddar, S., Schmidt, R., Tautges, N. E., Scow, K., Adding alfalfa to an annual crop rotation shifts the composition and functional response of tomato rhizosphere microbial communities, Appl. Soil Ecol., 167, 104102.
  38. Santos, L. F., Olivares, F. L., 2021, Plant microbiome structure and benefits for sustainable agriculture, Curr. Plant Biol., 26, 100198.
  39. Town, J. R., Gregorich, E. G., Drury, C. F., Lemke, R., Phillips, L. A., Helgason, B. L., 2022, Diverse crop rotations influence the bacterial and fungal communities in root, rhizosphere and soil and impact soil microbial processes, Appl. Soil Ecol., 169, 104241.
  40. Town, J. R., Dumonceaus, T., Tidemann, B., Helgason, B. L., 2023, Crop rotation significantly influences the composition of soil, rhizosphere, and root microbiota in canola (Brassica napus L.), Environ. Microbiome., 18, 40.
  41. Tyagi, R., Pradhan, S., Bhattacharjee, A., Dubey, S., Sharma, S., Notes, A., 2022, Management of abiotic stresses by microbiome-based engineering of the rhizosphere, J. Appl. Microbiol., 133(2), 254-272.
  42. Venter, Z. S., Jacobs, K., Hawkins, H. J., 2016, The impact of crop rotation on soil microbial diversity: a meta-analysis, Pedobiologia., 59(4), 215-223.
  43. Yang, S. K., Seo, Y. W., Lee, Y. S., Kim, H. W., Ma, K. C., Lim, K. H., Kim, H. J., Kim, J. G., Jung, W. J., 2011, Effects of green manure crops on red-pepper yields and soil physico-chemical properties in the vinyl house, Korean J. Soil. Sci. Fert., 19(2), 215-228.
  44. Zhang, J., Ahmed, W., Zhou, X., Yao, B., He, Z., Qiu, Y., Wei, F., He, Y., Wei, L., Ji, G., 2022, Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot incidence in Chinese cabbage, Plants, 11, 2295.
  45. Zhang, Y. S., Han, K. H., Jung, K. H., Cho, H. R., Seo, M. J., Sonn, Y. K., 2017, Study on the standards of proper effective rooting depth for upland crops, Korean J. Soil. Sci. Fert., 50(1), 21-30.
  46. Zhao, J., Yang, Y., Zhang, K., Jeong, J., Zeng, Z., Zang, H., 2020, Does crop rotation yield more in China? A meta-analysis, Field Crops. Res., 245, 107659.