• Title/Summary/Keyword: cultivated ginseng

Search Result 363, Processing Time 0.032 seconds

The Comparison of Seasonal Ginsenoside Composition Contents in Korean Wild Simulated Ginseng (Panax ginseng) which were Cultivated in Different Areas and Various Ages

  • Yang, Byung Wook;Lee, Jae Bum;Lee, Jung Min;Jo, Min Su;Byun, Jae Kyung;Kim, Hyoung Chun;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The ginsenoside content was compared with wild simulated ginseng (Panax ginseng) collected every season at 11 wild simulated ginseng plantations in Korea. As a result, the total saponin of 7 years old wild simulated ginseng showed the highest content of 4.5% in spring sampling wild simulated ginseng, 2.0% in summer sampling wild simulated ginseng, 1.2% in winter sampling wild simulated ginseng and 1.0% in autumn sampling wild simulated ginseng. And also, the total saponin of 10 years old wild simulated ginseng showed the highest content of 3.9% in spring sampling wild simulated ginseng, summer sampling wild simulated ginseng (1.8%), winter sampling wild simulated ginseng (1.6%) and autumn sampling wild simulated ginseng (0.6%). Therefore, the total saponin of spring sampling wild simulated ginseng was about 4.5 - 6.5 times higher than that of autumn sampling wild simulated ginseng regardless of cultivation period.

Pharmacognostical Studies on Ginseng Folium (인삼잎의 생약학적 연구)

  • 박종희
    • Korean Journal of Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.127-133
    • /
    • 1995
  • Ginseng Folium has been used to cure acute gastritis, alcoholism and anemia. The morphological and anatomical characteristics of the leaf and stem of Panax ginseng C.A. Meyer cultivated in Korea for 1 to 6 years are described. It is found that the vessels increase in number and diameter, and also the vascular bundles increase in number, as the plant becomes old. The result showed that the commercial &In Sam Ip& samples on the markets of Pusan, Kumsan, Taegu and Seoul have been derived from the leaf and stem of 4 to 6 years old P. ginseng plants, most of them being 5-6 years old.

  • PDF

Antioxidant activity of ginseng cultivated under mountainous forest with different growing years

  • Pan, Hong-Yan;Qu, Yang;Zhang, Jian-Kui;Kang, Ting-Guo;Dou, De-Qiang
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.355-360
    • /
    • 2013
  • Ginseng cultivated and grown naturally under mountainous forest is formally called "Lin-Xia-Shan-Shen" (LXSS) and grown in manual condition is called garden ginseng (GG) according to Chinese pharmacopoeia (2010 edition). Usually the growing condition of LXSS is similar to wild ginseng and mostly used in Chinese folks in ancient times. The antioxidant properties of LXSS with different growing years were evaluated by their inhibitions of thiobarbituric acid-reactive substance (TBA-RS) formation in liver homogenate and 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity comparing with those of GG. The inhibitions of different polar extracts (n-butanol and water) of LXSS and GG on TBA-RS formation were also evaluated. The results showed that the antioxidant effects of LXSS were higher than those of GG and the TBA-RS formation inhibition of LXSS with longer growing years were stronger than those with shorter growing years, while the DPPH-radical scavenging activity of LXSS did not show significant difference with the change of the growing year. The results indicated that the inhibitory effect of TBA-RS formation and the DPPH-radical scavenging of LXSS were correlated with the contents of ginsenosides. In adddition, the starch contents of LXSS and GG were determined by micro-amount method with spectrophotometer. It showed that the starch content in GG was higher than that of LXSS whose starch decreased gradually with the growing year.

Comparison of Ginsenosides and Acidic Polysaccharide Contents in Fresh Ginseng Cultivated in Different Seasons and Various Ages (수삼의 계절별 연근별 성분 변화)

  • Kang, Sung Ho;An, Beom Kyun;Hwang, Yu Jin;Yang, Byung Wook;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • The purpose of this study was to examine the changes in seasonal bioactive components of 4 and 6 years old fresh ginseng (Panax ginseng) and to provide basic information on the development of functional food using fresh ginseng. Seasonal changes were investigated by ginseng saponin analysis using HPLC method and acidic polysaccharides by carbazole sulfuric acid method. Total saponins showed the highest content of fresh ginseng collected in May, followed by March, July, and September. Fresh ginseng collected in May showed 2.5 times (4 years old) - 3.0 times (6 years old) higher than fresh ginseng collected in September. Acidic polysaccharides showed high content of fresh ginseng collected in March and September, and low content of fresh ginseng collected in May and July. From these results, the fresh ginseng collected in May can develop high concentrations of saponin. On the other hand, fresh ginseng collected in March and September is thought to be able to develop high concentration products of acidic polysaccharides.

Characterization of In vitro Propagated Plants Via Somatic Embryo Formation from Old Wild Panax ginseng

  • Bae, Kee Hwa;Choi, Yong Eui
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.405-411
    • /
    • 2014
  • Wild Korean ginseng has been recognized as highly precious medicine since ancient times. Nowadays, the population of wild ginseng in the forest of Korean peninsula is very rare due to indiscreet harvest. In this work, we investigated the plant regeneration via somatic embryogenesis from embryogenic callus of old wild ginseng (more than 50 years-old) and compared the features of plants regenerated from 5-years old and 50 years-old ginseng. Induction of embryogenic callus from adventitious roots of 50 year-old wild ginseng required 83 weeks of culture, but only 10 weeks were sufficient for 5 year-old ginseng. Height and width of plants derived from the old wild ginseng was smaller and slender compared to the plantlets derived from 5 year-old ginseng. Total chlorophyll contents was 2-6 time lower in plantlets regenerated from 50 year-old wild ginseng than those from 5 year-old ginseng, but anthocyanin content was higher in 50 year-old ginseng. Our results revealed that plants regenerated from old wild ginseng have different morphological and physiological characters probably due to age-dependent phenomenon.

Identity of Korean ginseng through bibliography - Focusing on Kimi(property) and efficacy (서지학적 고증을 통한 고려인삼의 정체성 : 기미(氣味), 효능을 중심으로)

  • Ko, Sungkwon
    • Journal of Ginseng Culture
    • /
    • v.1
    • /
    • pp.1-10
    • /
    • 2019
  • The purpose of this study is to investigate the changes of ginseng properties through bibliographical records. The cultivation of Korean wild simulated ginseng (mountain cultivated ginseng) started from the Goryeo Dynasty around A.D. 1000. Thereafter, from A.D. 1500 to A.D. 1600, ginseng cultivation technology was established in the Joseon Dynasty. At this time, the ginseng was begun to grow in the field near the house, and it is recorded as Gasam (field cultivated ginseng). The Jung-Jo-Sil-Rok (A.D. 1790) states that Gasam cultivation has expanded to the whole country. The properties of ginseng described in almost all oriental medicine books from A.D. 250 to A.D. 1600 were a slightly cold. However, after A.D. 1600, it is said to be slightly warm or warm. Considering from this record, the slightly cold ginseng before A.D. 1600 can be recognized as the properties of wild ginseng or wild simulated ginseng, and the slightly warm ginseng after A.D. 1600 can be recognized as Gasam properties.

Production Procedures and Economics of the American Ginseng (미국 화기삼의 종류별 생산방법과 경제성분석)

  • Lee, Dong-Phil
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.172-180
    • /
    • 2006
  • The purpose of this study is classifying types of American ginseng and estimating their production cost and revenue by the types. Usually, the American ginseng can be classified as 4 different types; wild ginseng(WG), wild simulated ginseng(WSG), woods grown ginseng(WGG), and field cultivated ginseng(FCG). This paper estimates costs and benefits for FCG, WGG, and WSG per acre. The WGG & WSG are produced under the tree at mountain while the FCG is produced at large scale farm with machinery. Annual profit for the FCG is $2,222 while that of the WGG and the WSG are $2,759 and $3,799 per acre. Although quantity produced per acre for the WGG and WSG(600lbs and 160lbs) are much smaller than that of the FCG(3,000lbs), prices per pound for the WGG and WSG($125, 375$) are higher than that of the FCG($24). In addition, production costs for the WGG and WSG are lower than that of the FCG because of the costs for seeds, shadow facility, and chemicals are different by the types of production.

Patterns of Soluble Protein, Reducing Sugar and Ginsenosides in Transformed Calli of Ginseng (Panax ginseng C.A. Meyer (형질전환 인삼 Callus의 단백질, 환원당 및 Ginsenoside의 양상)

  • Yang, Deok-Jun;Choe, Gwang-Tae;Yang, Deok-Deok
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 1991
  • This study was conducted to obtain basic information about the transformation of ginseng tissue, identification of opine compound and protein, and saponin production from ginseng callus transformed with Ti-plasmic of AW$.$obacterium tumefaiens C58. Ginseng crown gall callus induced by pTiC58 could be continuously cultured on the Phytohormone-free medium. The transformation was reconfirmed by the detection and identification of opine compound, from the gall callus. The transformed ginseng callus contained higher amounts of protein than normal callus and the protein pattern of transformed callus was quite different from that of normal callus. The xylose which is not detected in the normal callus and ginseng root was identified in gall callus. The saponin contents of gall callus of ginseng were three times higher than that of normal callus, and ginsenoside composition of the transformed callus was similar to that of the cultivated ginseng root, but quite different from that of normal callus.

  • PDF

Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil (토양 중 잔류된 Tolclofos-methyl의 인삼(Panax ginseng C. A. Meyer)에 대한 이행 및 잔류 특성)

  • Kim, Ji Yoon;Kim, Hea Na;Saravanan, Manoharan;Heo, Seong Jin;Jeong, Haet Nim;Kim, Jang Eok;Kim, Kwan Rae;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.130-140
    • /
    • 2014
  • Recently, some of the previous studies reported that tolclofos-methyl is still exist in ginseng cultivated soil, even though it is has been banned for ginseng. Therefore, the current study was aimed to examine the levels of absorption and translocation of tolclofos-methyl from ginseng cultivated soil to ginseng root and leaf stem for the period of 1 year. For this study, ginseng plants were transplanted in pots and treated with $5.0mg\;kg^{-1}$ of tolclofos-methyl (50% WP). At the end of each interval periods (every three months) the samples (soil, roots and leaf stems) were collected and analyzed the absorption and translocation levels of tolclofos-methyl using gas chromatography and mass spectrometry (GC-MS). The limit of quantitation of tolclofos-methyl was found to be $0.02mg\;kg^{-1}$ and 70.0~120.0% recovery was obtained with coefficient of variation of less than 10% regardless of sample types. In this study, a considerable amount of translocation of tolclofos-methyl residues were found in soil (4.28 to $0.06mg\;kg^{-1}$), root (7.09 to $1.54mg\;kg^{-1}$) and leaf stem (0.79 to $0.69mg\;kg^{-1}$). The results show that the tolclofos-methyl was absorbted and translocated from ginseng cultivated soil to ginseng root and ginseng leaf stem and found to be decreased time-coursely. Secondly, we were also analyzed soil, root and leaf stems samples from Hongcheon, Cheorwon, Punggi and Geumsan by GC-MS/MS (172 pesticides), LC-MS/MS (74 pesticides). In this study, 43 different pesticides were detected ($0.01{\sim}7.56mg\;kg^{-1}$) in soil, root and leaf stem. Further, tolclofos-methyl was detected 4 times separately in root sample alone which is less ($0.01{\sim}0.05mg\;kg^{-1}$) than their maximum residual limit (MRL) in ginseng. Consequently, the results from both studies indicate the residues of tolclofos-methyl found in ginseng cultivated soil and ginseng ensuring their safety level. Moreover, long-term evaluations are needed in order to protect the soil as well as ginseng free from tolclofos-methyl residues.