• Title/Summary/Keyword: crystallization process

Search Result 634, Processing Time 0.029 seconds

Synthesis of Two-Component Titanate Powders Using Ethylene Glycol Solution (에틸렌글리콜 용액을 이용한 2성분계 Titanate 분말의 합성)

  • 이상진;권명도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.346-351
    • /
    • 2002
  • Pure and fine, two-component titanate powders (barium titanate, calcium titanate etc.) were synthesized by an ethylene glycol method. Titanium isopropoxide and other metal ionic salts were dissolved in liquid-type ethylene glycol without any precipitation. In non-aqueous system, the amount of ethylene glycol affected the solubility and homogeneity of metal cation sources in the solution. At the optimum amount of the polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. Most of the synthesized powders had sub-micron or nano-size primary particles after calcination and the agglomerated calcined powders were easily ground by ball milling process. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after ball milling. The crystallization behavior and the microstructures of the calcined powders were affected on the ethylene glycol content.

Charaterization of GaN Films Grown on Si(100) by RF Magnetron Sputtering (RF magnetron sputtering 방법에 의해 Si(100) 기판 위에 성장된 GaN 박막의 특성에 대한 연구)

  • 이용일;성웅제;박천일;최우범;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.570-573
    • /
    • 2001
  • In this paper, GaN films have been grown on SiO$_2$/Si(100) substrates by RF magnetron sputtering. To obtain high quality GaN films, we used ZnO buffer layer and modified the process conditions. The charateristics of GaN films on RF power, substrate temperature and Ar/N$_2$gas ratio have been investigated by Auger electron spectroscopy and X-ray diffraction analysis. At RF power 150W, substrate temperature 500 $^{\circ}C$ and Ar/N$_2$=1:2 gas ratio, we could grow high quality GaN films. Through the atomic force microscope and photoluminescence analysises, it was observed that the crystallization of GaN films was improved with increasing annealing temperature and the optimal crystallization of GaN films was found at 1100 $^{\circ}C$ annealing temperature.

  • PDF

Synthesis of kaolinite by hydrothermal reaction using pseudoboehmite as starting material (Pseudoboehmite를 출발물질로한 kaolinite의 수열 합성)

  • 고태석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Kaolinite was synthesized through th acid treatment of mixture which consisted of psudoboehmite and colloidal silica in hydrothermal reaction at $213^{\circ}C$ under autogeneous vapor pressure. Crystallization process was characterized by X-ray powder diffraction pattern, IR spectra and Hinckley index was calculated. The synthesis in acidic solution promotes the dissolution of the starting materials and leads to crystallization of kaolinite. The rate of crystallization to kaolinite and stacking defect were found to e affected by kind of anion, acidity and starting materials.

  • PDF

Effective Annealing and Crystallization of Si Film for Advanced TFT System

  • Noguchi, Takashi
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • The effect of the crystallization and activated annealing of Si films using an excimer laser and the new CW blue laser are described and compared with furnace annealing for application in advanced TFTs and for future applications. Pulsed excimer laser annealing (ELA) is currently being used extensively as a low-temperature poly-silicon (LTPS) process on glass substrates as its efficiency is high in the ultra-violet (UV) region for thin Si films with thickness of 40-60 nm. ELA enables extremely low resistivity relating to high crystallinity for both the n- and p-type Si films. On the other hand, CW blue laser diode annealing (BLDA) enables the smooth Si surface to have arbitral crystal grains from micro-grains to an anisotropic huge grain structure only by controlling its power density. Both annealing techniques are expected to be applied in the future advanced TFT systems.

New Glass Ceramics for Hard Disk Substrates with Improved Surface Flatness

  • Utsuno, Futoshi;Yamada, Yusuke;Takeya, Huminori;Yasui, Itaru
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.363-367
    • /
    • 1999
  • New glass ceramics were investigated for the application as substrates to be used in hard disk devices. The glass system to precipitate lithium di-silicate was studied so as to optimize the composition to realize very high surface flatness. The addition of small amount of several metal oxides with high valences had very drastic effects on the microstructure, because they played a role of crystallization agents, and consequently it determined surface flatness even after the polishing process. The possible mechanism changes of crystal growth due to the addition of metal oxides were discussed in relation to the final micro-texture development. The glass ceramics with very high surface flatness(Ra=7.1 $\AA$) was obtained by the addition of the mixture of $P-2O_5 \;and \;MoO_3$ as crystallization agents.

  • PDF

Crystallization of Mesoporous Tin Oxide Prepared by Anodic Oxidation

  • Kim, Eun-Ji;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Crystallization of one-dimensional porous tin oxide during the anodic oxidation of tin at ambient temperatures is reported. Remarkable crystallinity is achieved when a substrate with a high elastic modulus (e.g., silicon) is used and the tin coating on it is very thin. It is suggested that the compressive stress applied to the anodic tin oxide during the anodization process is the key factor affecting the degree of crystallinity. The measured value of the stress generated during anodization matches well with the range of the most favorable theoretical pressure (stress) for crystallization.

Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment (후열처리에 의한 알루미늄 산화층의 특성 향상)

  • Jeon, Yoonnam;Kim, Sangjun;Park, Jihyun;Jeong, Nagyeom
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.275-281
    • /
    • 2019
  • Anodization is widely used to enhance the properties of aluminum, such as hardness, electric resistance, abrasion resistance, corrosion resistance etc. But these properties can be enhanced with additional process. According to the partial crystallization of oxide layer with post heat treatment, enhanced hardness can be expected with partial crystallization. In this study, post heat treatments were applied to the anodized aluminum alloys of Al6061 to achieve the partial crystallization, and crystallizations were evaluated with the reduced breakdown voltages. Interestingly, remarkable enhanced hardness (21~29%), abrasion resistance (26~62%), and reduced breakdown voltage (24~44%) were observed for the sulfuric acid anodized samples when we annealed the anodized samples with 1hour post heat treatment at $360^{\circ}C$. For the Al5052 alloys, a lot of cracks were observed when we applied the post heat treatment.

Synthesis of $\beta$-Alumina By Oxalate Coprecipitation Method and Its Crystallization Behavior (Oxalate 공침법에 의한 $\beta$-Alumina 합성과 결정화 거동)

  • 박용민;양유철;김형욱;박성수;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1995
  • To investigate the synthesis of $\beta$-Al2O3 and its crystallization behavior by oxalate coprecipitation method, the optimum pH range for oxalate coprecipitates has been theoretically calculated from the solubility products and the equilibrium constans of each metal ionic species and their solubility diagram wa obtained. The optimum pH range for oxalate coprecipitates at room temperature was estimated as <4. In experiment, we found that the optimum condition for oxalate coprecipitates was pH<1, which was not doped with pH controller. The Na+ ions were easily exchanged for the NH4+ ions of NH4OH which was used as pH controller, and those NH4+ ions were supposed to affect the crystallization behavior of $\beta$-Al2O3. The thermal decomposition of all complexes was almost complete below 40$0^{\circ}C$. The primary product of the decomposition process was m-Al2O3, which transformed to $\beta$"- or $\beta$-Al2O3 at temperature higher than 100$0^{\circ}C$. We found that the powder prepared at 120$0^{\circ}C$ had only $\beta$"- and $\beta$-Al2O3.EX>-Al2O3.

  • PDF

Crystallization and charg-discharge properties of $Li_2O-P_2O_5-V_2O_5$-gless as Cathode material (정극재료로서 $Li_2O-P_2O_5-V_2O_5$ 유리의 결정화와 충방전 특성)

  • Son, Myeng-Mo;Lee, Heon-Su;Song, Hee-Woong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.157-159
    • /
    • 2000
  • Vanadate glass in the $Li_2O-P_2O_5-V_2O_5$ system with 60mol% $V_2O_5$ was prepared by melting the bath in pt. crucible followed by quenching on the copper plate. We found that $Li_2O-P_2O_5-V_2O_5$ glass ceramics obtained from nucleation of $Li_2O-P_2O_5-V_2O_5$ glass showed significantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_8$. In the present paper, We describe the charge/discharge properties during crystallization process and find the best crystallization condition of $Li_2O-P_2O_5-V_2O_5$ glass as cathode material. The Charge and discharge capacity of $Li_2O-P_2O_5-V_2O_5$ glass was about 220mAh/g for the cell heat-treated at $250^{\circ}C$ for 2.5hr.

  • PDF

Manufacture of High Purity KI Crystal by Fractional Crystallization Method from Aqueous Waste of KI (KI 폐용액(廢溶液)으로부터 분별결정법(分別結晶法)에 의한 고순도(高純度) KI결정(結晶) 제조(製造)에 관한 연구(硏究))

  • Kim, Dae Weon;Jang, Seong Tae;Choi, Sung Bum
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • A laboratory study was carried out to recover KI crystals with high purity by using fractional crystallization method from a waste solution generated from the production of polarizing film for LCD industry. The waste solution contains 1.3% KI, and other impurities such as B, Na, and PVA etc. With purity higher than 99.5% KI crystals were produced through refining process such as vacuum evaporation, fractional crystallization, filtering, and 24hr aging. Also the concentrated impurities were eliminated about 70% by recrystallization.