DOI QR코드

DOI QR Code

Crystallization of Mesoporous Tin Oxide Prepared by Anodic Oxidation

  • Kim, Eun-Ji (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • 투고 : 2016.12.14
  • 심사 : 2017.01.23
  • 발행 : 2017.03.31

초록

Crystallization of one-dimensional porous tin oxide during the anodic oxidation of tin at ambient temperatures is reported. Remarkable crystallinity is achieved when a substrate with a high elastic modulus (e.g., silicon) is used and the tin coating on it is very thin. It is suggested that the compressive stress applied to the anodic tin oxide during the anodization process is the key factor affecting the degree of crystallinity. The measured value of the stress generated during anodization matches well with the range of the most favorable theoretical pressure (stress) for crystallization.

키워드

참고문헌

  1. H.-C. Shin, J. Dong, M. Liu, Adv. Mater. 2004, 16, 237-240. https://doi.org/10.1002/adma.200305660
  2. H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, P. Schmuki, Corros. Sci., 2005, 47(12), 3324-3335. https://doi.org/10.1016/j.corsci.2005.05.041
  3. J.-H. Jeun, H.-S. Ryu, S.-H. Hong, J. Electrochem. Soc., 2009, 156(9), J263-J266. https://doi.org/10.1149/1.3166145
  4. J.-H. Jeun, S.-H. Hong, Sens. Actuators B, 2010, 151(1), 1-7. https://doi.org/10.1016/j.snb.2010.10.002
  5. K. Lee, D. Kim, P. Roy, I. Paramasivam, B.I. Birajdar, E. Spiecker, P. Schmuki, J. Am. Chem. Soc., 2010, 132(5), 1478-1479. https://doi.org/10.1021/ja910045x
  6. A. Yamaguchi, T. Iimura, K. Hotta, N. Teramae, Thin Solid Films, 2011, 519(8), 2415-2420. https://doi.org/10.1016/j.tsf.2010.11.049
  7. G.F. Ortiz , P. Lavela, P. Knauth, T. Djenizian, R. Alcántara, J. L. Tirado, J. Electrochem. Soc., 2011, 158(10), A1094-A1099. https://doi.org/10.1149/1.3622346
  8. Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, ACS Appl. Mater. Interfaces, 2011, 3(7), 2800-2804. https://doi.org/10.1021/am200685s
  9. S. Yang, Y. Aoki, H. Habazaki, Appl. Surf. Sci., 2011, 257(19), 8190-8195. https://doi.org/10.1016/j.apsusc.2011.01.041
  10. L. Zaraska, N. Czopik, M. Bobruk, G.D. Sulka, J. Mech, M. Jaskula, Electrochim. Acta, 2013, 104, 549-557. https://doi.org/10.1016/j.electacta.2012.12.059
  11. D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, Mater. Sci. Eng. R, 2013, 74(12), 377-406. https://doi.org/10.1016/j.mser.2013.10.001
  12. D.V. Shinde, D.Y. Lee, S.A. Patil, I. Lim, S.S. Bhande, W. Lee, M.M. Sung, R.S. Mane, N.K. Shrestha, S.-H. Han, RSC Adv. 2013, 3(24), 9431-9435. https://doi.org/10.1039/c3ra22721a
  13. A. Palacio-Padros, M. Altomare, A. Tighineanu, R. Kirchgeorg, N. K. Shrestha, I. Díez-Perez, F. CaballeroBriones, F. Saanz, P. Schmuki, J. Mater. Chem. A, 2014, 2(4), 915-920. https://doi.org/10.1039/C3TA13704J
  14. W. Lee, S.-J. Park, Chem. Rev., 2014, 114(15), 7487-7556. https://doi.org/10.1021/cr500002z
  15. B.M. Rao, S.C. Roy, RSC Adv., 2014, 4(90), 49108-49114. https://doi.org/10.1039/C4RA06842D
  16. L. Zaraska, M. Bobruk, M. Jaskula, G.D. Sulka, Appl. Surf. Sci., 2015, 351, 1034-1042. https://doi.org/10.1016/j.apsusc.2015.06.052
  17. H. Chen, W. Zhu, X. Zhou, J. Zhu, L. Fan, X. Chen, Chem. Phys. Lett., 2011, 515(4), 269-273. https://doi.org/10.1016/j.cplett.2011.09.035
  18. A. Palacios-Padros, M. Altomare, K. Lee, I.Diez.-Perez, Fausto Sanz, Patrik Schmuki, Chem. Electro. Chem., 2014, 1(7), 1133-1137.
  19. J. Geurts, S. Rau, W. Richter, F. J. Schmitte, Thin Solid Films, 1984, 121(3), 217-225. https://doi.org/10.1016/0040-6090(84)90303-1
  20. L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, J. Solid State Chem., 1998, 135(1), 78-85. https://doi.org/10.1006/jssc.1997.7596
  21. A.diegueg, A. Romano-Rodriguez, A. Vila, and J. R. Morante, J. Appl. Phys., 2001, 90(3), 1550-1557. https://doi.org/10.1063/1.1385573
  22. M.N. Rumyantseva, A.M. Gaskov, N. Rosman, T. Pagnier, J.R. Morante. Chem. Mater., 2005, 17(4), 893-901. https://doi.org/10.1021/cm0490470
  23. P.L. Johnson, D. Teeters, Solid State Ionics, 2006, 177(26), 2821-2825. https://doi.org/10.1016/j.ssi.2006.01.029
  24. L.Z. Liu, X.L. Wu, F. Gao, J.C. Shen, T.H. Li, Paul K. Chu, Solid State Commun., 2011, 151(11), 811-814. https://doi.org/10.1016/j.ssc.2011.03.029
  25. M. Ledinský, L. Fekete, J. Stuchlík, T. Mates, A. Fejfar, J. Kocka, J. Non Cryst. Solids, 2006, 352(9), 1209-1212. https://doi.org/10.1016/j.jnoncrysol.2005.10.072
  26. M. Ledinsky, L. Fekete, J. Stuchlík, T. Mates, A. Fejfar, J. Kocka, J. Stepanek, J. Non Cryst. Solids, 2008, 354(19), 2253-2257. https://doi.org/10.1016/j.jnoncrysol.2007.09.073
  27. F. Ye, K. Lu, Acta Mater., 1998, 46(16), 5965-5971. https://doi.org/10.1016/S1359-6454(98)00240-7
  28. F. Ye, K. Lu, Phys. Rev. B, 1999, 60(10), 7018. https://doi.org/10.1103/PhysRevB.60.7018
  29. F. Ye, K. Lu, Acta Mater., 1999, 47(8), 2449-2454. https://doi.org/10.1016/S1359-6454(99)00104-4
  30. Y. X. Zhuang, J. Z. Jiang, T. J. Zhou, H. Rasmussen, L. Gerward, Appl. Phys. Lett., 2000, 77(25), 4133-4135. https://doi.org/10.1063/1.1332409
  31. S.-W. Lee, M.-Y. Huh, S.-W. Chae, J.-C. Lee, Scr. Mater., 2006, 54(8), 1439-1444. https://doi.org/10.1016/j.scriptamat.2006.01.002
  32. G.G. Stoney, Proc. R. Soc. Lond. A, 1909, 82(553), 172-175. https://doi.org/10.1098/rspa.1909.0021
  33. A. Brenner, S. Senderoff, J. Res. Natl. Bur. Stand., 1949, 42(105), 105-123. https://doi.org/10.6028/jres.042.009
  34. A.M. Cree, S.V. Hainsworth, G.W. Weidmann, Transactions of the IMF, 2006, 84(5), 246-251. https://doi.org/10.1179/174591906X130310
  35. S. Barth, C. Harnagea, S. Mathur, F. Rosei, Nanotechnology, 2009, 20, 115705-115709. https://doi.org/10.1088/0957-4484/20/11/115705
  36. H.Yinnon, D.R. Uhlmann, J. Non. Cryst. Solids, 1983, 54(3), 253-275. https://doi.org/10.1016/0022-3093(83)90069-8