Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.1.69

Crystallization of Mesoporous Tin Oxide Prepared by Anodic Oxidation  

Kim, Eun-Ji (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.1, 2017 , pp. 69-76 More about this Journal
Abstract
Crystallization of one-dimensional porous tin oxide during the anodic oxidation of tin at ambient temperatures is reported. Remarkable crystallinity is achieved when a substrate with a high elastic modulus (e.g., silicon) is used and the tin coating on it is very thin. It is suggested that the compressive stress applied to the anodic tin oxide during the anodization process is the key factor affecting the degree of crystallinity. The measured value of the stress generated during anodization matches well with the range of the most favorable theoretical pressure (stress) for crystallization.
Keywords
Anodic oxidation; Tin oxide; Crystallinity; Stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. X. Zhuang, J. Z. Jiang, T. J. Zhou, H. Rasmussen, L. Gerward, Appl. Phys. Lett., 2000, 77(25), 4133-4135.   DOI
2 S.-W. Lee, M.-Y. Huh, S.-W. Chae, J.-C. Lee, Scr. Mater., 2006, 54(8), 1439-1444.   DOI
3 G.G. Stoney, Proc. R. Soc. Lond. A, 1909, 82(553), 172-175.   DOI
4 A. Brenner, S. Senderoff, J. Res. Natl. Bur. Stand., 1949, 42(105), 105-123.   DOI
5 G.F. Ortiz , P. Lavela, P. Knauth, T. Djenizian, R. Alcántara, J. L. Tirado, J. Electrochem. Soc., 2011, 158(10), A1094-A1099.   DOI
6 Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, ACS Appl. Mater. Interfaces, 2011, 3(7), 2800-2804.   DOI
7 S. Yang, Y. Aoki, H. Habazaki, Appl. Surf. Sci., 2011, 257(19), 8190-8195.   DOI
8 L. Zaraska, N. Czopik, M. Bobruk, G.D. Sulka, J. Mech, M. Jaskula, Electrochim. Acta, 2013, 104, 549-557.   DOI
9 F. Ye, K. Lu, Acta Mater., 1999, 47(8), 2449-2454.   DOI
10 D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, Mater. Sci. Eng. R, 2013, 74(12), 377-406.   DOI
11 D.V. Shinde, D.Y. Lee, S.A. Patil, I. Lim, S.S. Bhande, W. Lee, M.M. Sung, R.S. Mane, N.K. Shrestha, S.-H. Han, RSC Adv. 2013, 3(24), 9431-9435.   DOI
12 A. Palacio-Padros, M. Altomare, A. Tighineanu, R. Kirchgeorg, N. K. Shrestha, I. Díez-Perez, F. CaballeroBriones, F. Saanz, P. Schmuki, J. Mater. Chem. A, 2014, 2(4), 915-920.   DOI
13 W. Lee, S.-J. Park, Chem. Rev., 2014, 114(15), 7487-7556.   DOI
14 B.M. Rao, S.C. Roy, RSC Adv., 2014, 4(90), 49108-49114.   DOI
15 L. Zaraska, M. Bobruk, M. Jaskula, G.D. Sulka, Appl. Surf. Sci., 2015, 351, 1034-1042.   DOI
16 H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, P. Schmuki, Corros. Sci., 2005, 47(12), 3324-3335.   DOI
17 A. Palacios-Padros, M. Altomare, K. Lee, I.Diez.-Perez, Fausto Sanz, Patrik Schmuki, Chem. Electro. Chem., 2014, 1(7), 1133-1137.
18 J. Geurts, S. Rau, W. Richter, F. J. Schmitte, Thin Solid Films, 1984, 121(3), 217-225.   DOI
19 H.-C. Shin, J. Dong, M. Liu, Adv. Mater. 2004, 16, 237-240.   DOI
20 J.-H. Jeun, H.-S. Ryu, S.-H. Hong, J. Electrochem. Soc., 2009, 156(9), J263-J266.   DOI
21 J.-H. Jeun, S.-H. Hong, Sens. Actuators B, 2010, 151(1), 1-7.   DOI
22 K. Lee, D. Kim, P. Roy, I. Paramasivam, B.I. Birajdar, E. Spiecker, P. Schmuki, J. Am. Chem. Soc., 2010, 132(5), 1478-1479.   DOI
23 A. Yamaguchi, T. Iimura, K. Hotta, N. Teramae, Thin Solid Films, 2011, 519(8), 2415-2420.   DOI
24 H. Chen, W. Zhu, X. Zhou, J. Zhu, L. Fan, X. Chen, Chem. Phys. Lett., 2011, 515(4), 269-273.   DOI
25 L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, J. Solid State Chem., 1998, 135(1), 78-85.   DOI
26 A.M. Cree, S.V. Hainsworth, G.W. Weidmann, Transactions of the IMF, 2006, 84(5), 246-251.   DOI
27 S. Barth, C. Harnagea, S. Mathur, F. Rosei, Nanotechnology, 2009, 20, 115705-115709.   DOI
28 H.Yinnon, D.R. Uhlmann, J. Non. Cryst. Solids, 1983, 54(3), 253-275.   DOI
29 A.diegueg, A. Romano-Rodriguez, A. Vila, and J. R. Morante, J. Appl. Phys., 2001, 90(3), 1550-1557.   DOI
30 M.N. Rumyantseva, A.M. Gaskov, N. Rosman, T. Pagnier, J.R. Morante. Chem. Mater., 2005, 17(4), 893-901.   DOI
31 M. Ledinsky, L. Fekete, J. Stuchlík, T. Mates, A. Fejfar, J. Kocka, J. Stepanek, J. Non Cryst. Solids, 2008, 354(19), 2253-2257.   DOI
32 P.L. Johnson, D. Teeters, Solid State Ionics, 2006, 177(26), 2821-2825.   DOI
33 L.Z. Liu, X.L. Wu, F. Gao, J.C. Shen, T.H. Li, Paul K. Chu, Solid State Commun., 2011, 151(11), 811-814.   DOI
34 M. Ledinský, L. Fekete, J. Stuchlík, T. Mates, A. Fejfar, J. Kocka, J. Non Cryst. Solids, 2006, 352(9), 1209-1212.   DOI
35 F. Ye, K. Lu, Acta Mater., 1998, 46(16), 5965-5971.   DOI
36 F. Ye, K. Lu, Phys. Rev. B, 1999, 60(10), 7018.   DOI