• Title/Summary/Keyword: crystallite

Search Result 371, Processing Time 0.028 seconds

A Study on the Change of fine Structure of Hemp Cellulose (안동포원료 Hemp Cellulose의 미세구조에 관한 연구)

  • Lee UK Ja;Ryu Duck Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 1984
  • This study was investigation of the change of fine structure of hemp cellulose at different growing stages. The samples collected about every eight day were divided into seven groups based on plants height, then they were numbered from 1 to 7 in the order of their height. For this, the degree of crystallinity, orientation and crystallite size were measured by wide angle X-ray diffraction method. The results of this experiment were summerized as follows ; 1) The degree of crystallinity was increased by growth of hemp celtilose to be maximum in sample 5$\~$6. At this stage, the stability of crystals was showed in good states. In addition to, crystallinity index by Segal, Turley and area method showed same tendency as Ruland's. 2) The change of orientation was gradually increased by growth of hemp cellulose. This result was correlated with the degree of crystallinity. Therefore, the change of orientation depend on the degree of crystallinity. 3) On the other hand, the crystallite size was decreased by growth of hemp cellulose. But, increased after sample 4. By the way, crystallite size was interrelated with growth rate.

  • PDF

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte (황산구리 전착에서의 첨가제가 구리전착층의 경도에 미치는 영향)

  • Min, Sung-Ki;Lee, Jeong-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.143-150
    • /
    • 2011
  • Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.

A Study of Crystallization and Fracture Toughness of Glass Ceramics in the $ZrO_2.SiO_2$ Systems Prepared by the Sol-Gel Method (졸-겔법으로 제조한 $ZrO_2.SiO_2$계 결정화유리의 결정화 및 파괴인성에 관한 연구)

  • 신대용;한상목;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.50-56
    • /
    • 2000
  • Precursor gels with the composition of xZrO2·(100-x)SiO2 systems (x=10, 20 and 30 mol%) were prepared by the sol-gel method. Kinetic parameters, such as activation energy, Avrami's exponent, n, and dimensionality crystal growth value, m, have been simultaneously calculated from the DTA data using Kissinger and Matusita equations. The crystallite size dependence of tetragonal to monoclinic transformation of ZrO2 was investigated using XRD, in relation to the fracture toughness. The crystallization of tetragonal ZrO2 occurred through 3-dimensional diffusiion controlled growth(n=m=2) and the activation energy for crystallization was calculated using Kissinger and Matusita equations, as about 310∼325±10kJ/mol. The growth of t-ZrO2, in proportion to the cube of radius, increased with increasing heating temperature and hteat-treatment time. It was suggested that the diffusion of Zr4+ ions by Ostwald ripening was rate-limiting process for thegrowth of t-ZrO2 crystallite size. The fracture toughness of xZrO2·(100-x)SiO2 systems glass ceramics increased with increasing crystallite size of t-ZrO2. The fracture toughness of 30ZrO2·70SiO2 system glass ceramics heated at 1,100℃ for 5h was 4.84 MPam1/2 at a critical crystaliite size of 40 nm.

  • PDF

Measurement of Crystallite Size of Method and Evaluation of Crystal Defects (X선 회절법에 의한 할로겐화 은 유제입자의 크리스탈라이트 크기 측정과 결정결함 평가에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.330-336
    • /
    • 2009
  • The size of crystallites in mono-dispersed cubic silver bromide grains was measured by applying a powder X-ray diffraction method and Scherrer's equation to grains that were suspended in swollen gelatin layers. In order to evaluate the existence of defects, the measured crystallite size was compared to those measured by using a scanning electron microscope. In the case of the grains prepared by the controlled double jet method, the size of crystallites was equal to the edge length of the grains that had edge lengths smaller than 400 nm. This result proved the usefulness of the above-stated method for measuring the size of crystallites and also evaluating the presence of any crystal defect in each grain. In the case of the grains, which were precipitated in the presence of a sensitizing dye and potassium iodide, the size of crystallites was smaller than the edge's length, indicating the discontinuities in the grains introduced during the precipitation process.

Effect of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films

  • Kumar, Davinder;Singh, Avtar;Kaur, Navneet;Katoch, Apoorva;Kaur, Raminder
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2022
  • Transparent thin films of pure and nickel-doped ZrO2 are grown successfully by sol-gel dip-coating technique. The structural and optical properties according to the different annealing temperatures (300 ℃, 400 ℃ and 500 ℃) are investigated. Analysis of crystallographic properties through X-ray diffraction pattern reveals an increase in crystallite size due to increase in crystallinity with temperature. All fabricated thin films are highly-oriented along (101) planes, which enhances the increase in nickel doping. Scanning electron microscopy and energy dispersive spectroscopy are employed to confirm the homogeneity in surface morphology as well as the doping configuration of films. The extinction coefficient is found to be on the order of 10-2, showing the surface smoothness of deposited thin films. UV-visible spectroscopy reveals a decrease in the optical band gap with the increase in annealing temperature due to the increase in crystallite size. The variation in Urbach energy and defect density with doping and the change in annealing temperature are also studied.

Size and Crystal Structure Dependence of Photochromism of Nanocrystalline WO3 and MoO3 Prepared by Acid-Precipitation Method

  • Jun Young, Kwak;Young Hee, Jung;Yeong Il, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Nanocrystallne WO3 and MoO3 with several different sizes and crystal structures were prepared by simple acid precipitation and subsequent heat treatment. The photochromic (PC) properties of these samples were comparatively investigated in powder state by monitoring diffuse reflectance spectral changes after bandgap irradiation. The PC effect of hexagonal WO3 and monoclinic WO3 strongly depended upon crystallite size rather than crystal structure. The smaller the crystallite size, the better the PC effect. However, orthorhombic WO·H2O and MoO3 having hexagonal and orthorhombic structures did not follow this trend. One consistent result for all WO3 and MoO3 samples is that the heat treatment in air, which changes crystallinity, whether it changes the crystal structure or only the crystallite size, reduces the PC effect. Since the thermal treatment reduces the surface oxygen defect sites, we believe that the PC effect of WO3 and MoO3 depends critically on the surface oxygen defect sites that serve as deep trap sites for photogenerated electrons and oxygen radical holes. We also found that the proton insertion claimed by double charge injection model is not critical for the PC effect.

Effects of Crystallization Behavior on Microwave Dielectric Properties of CaMgSi2O6 Glass-Ceramics

  • Choi, Bo Kyeong;Kim, Eung Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.70-74
    • /
    • 2013
  • Dependence of microwave dielectric properties on the crystallization behaviors of $CaMgSi_2O_6$ (diopside) glass-ceramics was investigated with different heat treatment methods (one and/or two-step). The crystallization behaviors of the specimens, crystallite size and degree of crystallization, were evaluated by differential thermal analysis (DTA), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis by combined Rietveld and reference intensity ratio (RIR) methods. With an increase in heattreatment temperature, the dielectric constant (K) and the quality factor (Qf) increased due to the increase of the crystallite size and degree of crystallization. The specimens heat-treated by the two-step method had a higher degree of crystallization than the specimens heat-treated by the one-step method, which induced improvement in the quality factor (Qf) of the specimens.

Appearance of ${\gamma}-phase$ of polypropylene terpolymer

  • Seo, Yong-Sok;Hong, Soon-Man
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.203-203
    • /
    • 2006
  • In this study, a novel strategy to prepare a crystallized sample of terpolymer containing high content of ${\gamma}-form$ was experimentally sought. By the foaming process, it was possible for the first time to produce a commercial high molar-mass terpolymer being in a high content of ${\Box}-form$. The large amount of nuclei produced during the foaming process by FIC is ascribed to be the reason. It accounts for the structural disorder in the crystallite formation because of excess amount of chains length for the formation of a stable crystallite.

  • PDF

A Photocatalytic Degradation of Bromate over Nanosized Titanium Dioxide Prepared by Reverse Micelle (역상마이셀에 의한 나노크기 이산화티탄의 제조 및 브로메이트 광분해 특성)

  • 이만식;홍성수;박홍재;정영언;박원우
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.987-992
    • /
    • 2002
  • Nanosized titania sol has been produced by the controlled hydrolysis of titanium tetraisopropoxide(TTIP) in sodium bis(2-ethylhexyl)sulfosuccinate(AOT) reverse micelles. The physical properties, such as crystallite size and crystallinity according to R ratio have been investigated by FT-IR, XRD and UV-DRS. In addition, the photocatalytic degradation of bromate has been studied by using batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. It is shown that the anatase structure appears in the 300~$600^{\circ}C$ calcination temperature range and the formation of anatase into rutile starts above $700^{\circ}C$. The crystallite size increases with increasing R ratio. In the photocatalytic degradation of bromate, the photocatalytic decomposition of bromate shows the decomposition rate increases with decreasing initial concentration of bromate and with increasing intensity of light.

Powder Properties of ZrO2-MgO System Prepared by Co-precipitation Method (공침법으로 제조한 ZrO2-MgO계 분말특성)

  • 이형복;정윤중;김영규;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.109-115
    • /
    • 1989
  • The properties of the powders of ZrO2-MgO system prepared by co-precipitation method using ZrOCl2.8H2O and MgCl2.6H2O as starting materials were investigated after calcination from $600^{\circ}C$ to 120$0^{\circ}C$. The crystallization temperature of amorphous ZrO2 was increased as MgO contents increased. The crystallite size of ZrO2 was increased with increasing calcination temperature. The crystallite size of tetragonal ZrO2 calcined at 100$0^{\circ}C$ for 1hr wa about 45nm, and MgO contributed effectively to promoting stability of tetragonal Zirconia.

  • PDF