Browse > Article
http://dx.doi.org/10.14773/cst.2011.10.4.143

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte  

Min, Sung-Ki (School of Materials Science and Engineering, Inha University)
Lee, Jeong-Ja (School of Materials Science and Engineering, Inha University)
Hwang, Woon-Suk (School of Materials Science and Engineering, Inha University)
Publication Information
Corrosion Science and Technology / v.10, no.4, 2011 , pp. 143-150 More about this Journal
Abstract
Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.
Keywords
copper; electroplating; additive; hardness; crystallite size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. H. Song, J. S. Kim, and S. I. Pyun, J. Met. Fin. Soc., Korea, 20, 154 (1987).
2 C.P. Fabian, M.J. Ridd, and M.E. Sheehan, J. Hydrometallurgy, 86, 44 (2007).   DOI   ScienceOn
3 K. Kondo, T. Matasumoto, and K. Watanabe, J. Electrochem. Soc., 151, 250 (2004).
4 K. G. Jordan and C.W. Tobias, J. Electrochem. Soc., 138, 1251 (1991).   DOI
5 Y. Y. Lee, Y. J. Park, B. W. Cho, and J. B. Lee, Corros. Sci. Tech., 1, 90 (2002).
6 J. S. Kim and H. S. Kim, Corros. Sci. Tech., 6, 154, (2007).
7 C. Cheung, F. Djuanda, U. Erb, and G. Palumbo, J. Nanostructured Materials, 5, 513 (1995).   DOI   ScienceOn
8 K. A. Padmanabhan, J. Mater. Sci. Eng., 200, 304 (2001).
9 B. Szpunar and M. Aus, J. Magnerism and Magnetic Materials, 187, 325 (1998).   DOI   ScienceOn
10 W. S. Hwang and H. W. Kim, Corros. Sci. Tech., 2, 243 (2003).
11 W. S. Hwang and W. S. Cho, Mater. Sci. Forum, 510, 1062 (2006).
12 W. S. Hwang and J. J. Lee, Mater. Sci. Forum, 510, 1126 (2006).
13 M. H. Seo, J. S. Kim, S. H. Kim, J. I. Wyi, W. S. Hwang, S. S. Jang, H. K. Jung, and B. S. Chun, Corros. Sci. Tech., 2, 197 (2003).
14 M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, and M. Mabuchi, Mater. Sci. Eng. A, 457, 120 (2007).   DOI   ScienceOn
15 J. J. Kim, S. K. Kim, and Y. S. Kim, J. Electroanal. Chem., 542, 61 (2003).
16 N. D. Nikolic, E. R. Stojikovic, D. R. Djurovic, M. G. Pavlovic, and V. R. Knezevic, Mater. Sci. Forum, 352, 73 (2000).
17 S. R. Lekshmana, J. Cryst. Growth, 102, 542 (1990).   DOI   ScienceOn
18 A. Ibanez and E. Fatas, Surf. Coat. Technol., 191, 7 (2005).   DOI   ScienceOn